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JENSEN TYPE INEQUALITIES AND RADIAL NULL SETS
Catherine Bénéteau and Boris Korenblum

Abstract. We extend Jensen’s formula to obtain an upper estimate of
log |f(0)| for analytic functions in the unit disk D that are subject to a
growth restriction. Suppose we have a closed subset E of the unit circle and
f in addition is continuous in the union of the open disk and E. We obtain
a formula that gives an upper estimate of of log |f(0)| in terms of the values
of f on E and the so-called k-entropy of E. When the set E is taken to be
the whole unit circle, we get the classical Jensen’s inequality. Our formula
is then applied to the study of radial null sets. 2000 Mathematics Subject
Classification: 30H05, 30E25, 46E15.

1 Growth Spaces

In what follows, k denotes an increasing twice differentiable function that
maps [0, 1) onto [0,∞) and satisfies

∫ 1

0
k(r)dr < ∞(1)

(1− r)k′(r)is non-decreasing(2)

k(1− t/2)

k(1− t)
≤ C (0 < t <

1

2
)(3)

A<k> denotes the Banach space of analytic functions f in D with the norm

||f ||<k> = sup{|f(z)| exp(−k(|z|)) : z ∈ D} < ∞.

UBA<k> denotes the unit ball of A<k>; it consists of f satisfying

log |f(z)| ≤ k(|z|) (z ∈ D.)

In the special case that k(r) = λα(r) = α log 1
1−r

for α > 0, we write A−α for
A<k>.
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2 Two Problems

(A) Find good (upper and lower) estimates for the quantity

J (Z, k) = sup{log |f(0)| : f ∈ UBA<k>, f |Z= 0}

where Z = {an} ⊂ D is a given sequence.
(B) Find good estimates for

J (E, ϕ, k) = sup{log |f(0)| : f ∈ UBA<k> ∩ C(D ∪ E), |f | |E= ϕ}

where E ⊂ ∂D is a closed set and ϕ is a non-negative continuous function
on E.

Note that for k ≡ 0, (A<0> = H∞) both problems have exact solutions:

J (Z, 0) = −∑
n

log
1

|an|

J (E, ϕ, 0) =
∫

E
log ϕ(ζ)dm(ζ)

where dm is the normalized Lebesgue measure on ∂D. (Here, we assume
0 ≤ ϕ(ζ) ≤ 1 on E.)

3 Results for A−α

Although the main thrust of this paper is problem (B), we give here for the
sake of comparison the following result on problem (A) for A−α (see [2] for
the proof.)
We define the logarithmic entropy of a finite set E ⊂ ∂D as

κ̂(E) =
∑
n

|In| log
e

|In|
where {In} are the complementary arcs of E and | • | denotes normalized
Lebesgue measure.
For a finite set S ⊂ D not containing 0, we define

T (S) =
∑{log

1

|z| : z ∈ S}
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and the radial projection of S :

PrS = { z

|z| : z ∈ S}.

Then we have

J (Z, λα) ≤ inf
S⊂Z

{α[κ̂(PrS) + log κ̂(PrS)]− T (s) + α log+ T (s)}+ Cα

and
J (Z, λα) ≥ inf

S⊂Z
{α[κ̂(PrS)− log κ̂(PrS)]− T (s)} − Cα

where Cα > 0 depends only on α, and the infima are taken over all finite
subsets S of Z.

COROLLARY 3.1 For a sequence Z such that 0 is not in Z, define

D+(Z) = inf{m : inf
S⊂Z

(mκ̂(PrS)− T (s)) > −∞}.

Then D+(Z) ≤ α is necessary and D+(Z) < α is sufficient for Z to be an
A−α zero set.

Note that for other spaces A<k> such that k has faster than logarithmic
growth, a similar description of zero sets is not known.

4 Problem (B) for A<k>

THEOREM 4.1

J (E, ϕ, k) ≤
∫

E
max{log ϕ(ζ), log p}dm(ζ)− (log p)

α

1− α
(1− |E|)

+ (
L

α
)log2 CEntrk(E)

where 0 < p ≤ 1 , 0 < α ≤ 1
2

are arbitrary, C is the constant in (3), L is an
absolute constant, and Entrk(E) is the k-entropy of E, defined as follows:

Entrk(E) =
∑
n

∫ 1

1−|In|
k(t)dt

where {In} are the complementary arcs of E.
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Special cases: (1) E = ∂D. Letting p → 0+, we get

J (∂D, ϕ, k) ≤
∫

∂D
log ϕ(ζ)dm(ζ)

which is the classical Jensen’s inequality (in fact, equality.)
(2) If 0 ≤ ϕ(ζ) ≤ 1 on E and p = maxζ∈E ϕ(ζ), we obtain

J (E, ϕ, k) ≤ (log p)
|E| − α

1− α
+ (

L

α
)log2 CEntrk(E).

Choosing α = |E|/2, we get

J (E, ϕ, k) ≤ 1

2
(log p)|E|+ (

2L

|E|)
log2 CEntrk(E).

(3) If p = 1 and α = 1
2
, then

J (E, ϕ, k) ≤
∫

E
log+ ϕ(ζ)dm(ζ) + (2L)log2 CEntrk(E).

Proof: Write
∂D− E =

⋃
n

In

where the In are open disjoint arcs on the unit circle. Call an and bn the
endpoints of In. Let 0 < α ≤ 1

2
. Let γn be the open arc of the circle inside

the unit disk passing through an and bn and forming an angle of πα (we
will think of it as the normalized angle α) with the arc In. Let Γ =

⋃
n γn.

Γ∪E forms the boundary of an open subset Ω of the unit disk containing the
origin. For the proof, we construct three functions U1, U2, and V as follows.
Step 1: Construction of U1 and U2.

Define

U1(z) =
∫

E
Re(

ζ + z

ζ − z
)dm(ζ).

U1 is the harmonic measure of E with respect to D.

LEMMA 4.1

lim
r→1−

U1(rζ) = χE(ζ) a.e. on ∂D

where χE is the characteristic function of E. In addition, U1(z) ≤ α for
z ∈ Γ.
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Proof: The first statement is clear from the definition of U1 as harmonic
measure. Notice that

U1(z) ≤ Wn(z) =
∫

∂D−In

Re(
ζ + z

ζ − z
)dm(ζ)

for every n. Wn is the harmonic measure of ∂D − In and has a few nice
geometric properties. In particular, Wn(z) is constant on any circle passing
through an and bn. In fact it is not hard to see that if z is a point in the
disk, and if we consider the circle Cn passing through an, bn, and z, then
Wn(z) = αn(z), where αn(z) is the (normalized) angle between the arc In

and the circle Cn. Therefore, for any z ∈ Γ, z ∈ γn for some n, and so
U1(z) ≤ Wn(z) ≤ α.2

Now let 0 < p ≤ 1 and define

U2(z) =
∫

E
Re(

ζ + z

ζ − z
) max{log ϕ(ζ), log p}dm(ζ).

Notice that U2 is harmonic in D, and

U2(z) ≥ (log p)U1(z) ≥ (log p)α

for z ∈ Γ, by Lemma 4.1.
Step 2: Construction of V. First let K(s) = k(1− e−s) for s > 0 and extend
K so that K(s) = 0 for s < 0. Now define a function

S(z) =
∑
n

max(S1
n(z)(1− αn(z)), S2

n(z)(1− αn(z)))

where

S1
n(z) = K(log | 2(z − an)

(z − bn)(bn − an)
|)

and

S2
n(z) = K(log | 2(z − bn)

(z − an)(bn − an)
|).

Notice that

log | 2(z − an)

(z − bn)(bn − an)
|

is harmonic in D and since (1 − r)k′(r) is non-decreasing, S1
n(z) is subhar-

monic in D. Moreover, the level curves of S1
n are orthogonal to the level
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curves of (1−αn(z)). Since the product of two subharmonic functions whose
gradients are orthogonal is subharmonic, we conclude that S1

n(z)(1− αn(z))
is subharmonic in D. A similar argument shows that

S2
n(z)(1− αn(z))

is subharmonic in D. Therefore the maximum S(z) of those two functions is
subharmonic in D.

LEMMA 4.2

∫

∂D
S(ζ)dm(ζ) ≤ Entrk(E).

Proof:
∫

∂D
S(ζ)dm(ζ) =

∫

∂D

∑
n

max(S1
n(ζ)(1− αn(ζ)), S2

n(ζ)(1− αn(ζ)))

=
∑
n

∫

In

max(S1
n(ζ), S2

n(ζ))dm(ζ).

Let’s study that last integral. If ζ is closer to an than to bn, for example,
then the integrand becomes

K(log
2|ζ − bn|

|ζ − an||bn − an|) ≤ K(log
2

|ζ − an|)

≤ K(log
π

t− θn

)

where ζ = eit, an = eiθn . A similar estimate holds when ζ is closer to bn =
eiψn . Therefore we get:

∫

∂D
S(ζ)dm(ζ) ≤ ∑

n

1

2π
(
∫ θn+ψn

2

θn

K(log
π

t− θn

)dt

+
∫ ψn

θn+ψn
2

K(log
π

ψn − t
)dt)

≤ ∑
n

∫ 1

1−|In|
k(r)dr

= Entrk(E).2
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Assume Entrk(E) is finite and define the following harmonic function

V (z) =
∫

∂D
Re(

ζ + z

ζ − z
)S(ζ)dm(ζ).

By the maximum principle, S(z) ≤ V (z) for z ∈ D.

LEMMA 4.3 V has the following properties.

V (0) ≤ Entrk(E)

V (ζ) = 0 for ζ ∈ E

V (z) ≥ (
L

α
)− log2 Ck(|z|) for some absolute constant L and for z ∈ Γ.

Proof: The first two properties are immediate from the definition of V and
by lemma 4.2. For the third, let us examine the behavior of V on Γ. First of
all, it is geometrically clear that for z ∈ Γ, there exists an absolute constant
L such that if z ∈ γn,

0 <
min(|z − an|, |z − bn|)

1− |z| ≤ L

α
< ∞.

Therefore for z ∈ γn, (let’s say z is closer to an than to bn)

V (z) ≥ S(z)

≥ K(log
2|z − bn|

|z − an||bn − an|)

≥ K(log
1

|z − an|)

≥ K(log
α

L(1− |z|))

= k(1− L

α
(1− |z|))

≥ C [log2
L
α

]+1k(1− (1− |z|))
(by property (3) of k)

≥ C log2
2L
α k(|z|)

= (
2L

α
)log2 Ck(|z|).
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By relabeling L, we get the statement of the lemma.2
Step 3: Construction of H and application of the maximum principle. Fi-
nally, let us define

H(z) = U2(z)− (log p)
α

1− α
(1− U1(z)) + (

L

α
)− log2 CV (z).

H is harmonic in the disk. Moreover, for ζ ∈ E,

H(ζ) ≥ log ϕ(ζ) = log |f(ζ)|.

On the other hand, if z ∈ Γ,

H(z) ≥ (log p)α− (log p)
α

1− α
(1− α) + k(|z|) = k(|z|) ≥ log |f(z)|.

Recall that Ω is the part of the unit disk that is bounded by Γ ∪ E. We
therefore have a harmonic function H whose values on the boundary of Ω
dominate the boundary values of log |f(z)|, a function that is subharmonic
in Ω. By the maximum principle, we can conclude that

log |f(0)| ≤ H(0)

≤
∫

E
max{log ϕ(ζ), log p}dm(ζ)− (log p)

α

1− α
(1− |E|)

+ (
L

α
)log2 CEntrk(E)

as desired.2

COROLLARY 4.1 If f ∈ A<k> and

lim
r→1−

f(rζ) = 0

uniformly in ζ ∈ E, and if |E| > 0 and Entrk(E) < ∞, then f ≡ 0.

Remark: It is well-known (Lusin-Privalov theorem) that there are non-zero
analytic functions that have zero radial limits on a set E of full Lebesgue
measure [4]. (However, this cannot happen if |E| > 0 and at the same
time E is of the second Baire category.) More specifically, no matter how
slowly k(r) tends to +∞, there is always a non-zero f in A<k> such that
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limr→1− f(rζ) = 0 a.e. [3]. By Egoroff’s theorem, f may have uniform radial
limits 0 on a closed set E whose measure is arbitrarily close to the full measure
of ∂D. Corollary 4.1 shows that such uniform radial null sets E with |E| > 0
must have infinite k-entropy. A similar phenomenon was discovered by S.
V. Hrus̆c̆ev (see [1], p. 278-305) in connection with the Khinchin-Ostrowski
property.
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