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Abstract. Bohr’s theorem ([10]) states that analytic functions bounded by
1 in the unit disk have power series

∑
anzn such that

∑
|an||z|n < 1 in the

disk of radius 1/3 (the so-called Bohr radius.) On the other hand, it is known
that there is no such Bohr phenomenon in Hardy spaces with the usual norm,
although it is possible to build equivalent norms for which a Bohr phenomenon
does occur! In this paper, we consider Hardy space functions that vanish at
the origin and obtain an exact positive Bohr radius. Also, following [4, 11],
we discuss the growth and Bohr phenomena for series of the type

∑
|an|prn,

0 < p < 2, that come from functions f(z) =
∑

anzn in the Hardy spaces. We
will then consider Bohr phenomena in more general normed spaces of analytic
functions and show how renorming a space affects the Bohr radius. Finally,
we extend our results to several variables and obtain as a consequence some
general Schwarz-Pick type estimates for bounded analytic functions.

1. Introduction

Let D = {z : z ∈ C, |z| < 1} be the open unit disk in the complex plane and for
0 < q ≤ ∞, let Hq := Hq(D) denote as usual the Hardy spaces in the disk (cf.
[12, 13, 14, 16].) Bohr’s theorem ([10]) says that for any f(z) =

∑∞
n=0 anz

n in
the unit ball of H∞,

∑
|an|rn ≤ 1 for any r ≤ 1

3
, and this value 1

3
is sharp. It is

interesting to note that for any 0 < q < ∞, there is no 0 < r < 1 such that

‖f‖Hq ≤ 1 ⇒
∞∑

n=0

|an|rn ≤ 1.

One way of seeing this is to consider, following [7], the extremal functions in Hq

maximizing the derivative at the origin when the value at the origin is prescribed:
these are functions

fc(z) = (c
q
2 +

√
1− cqz)

2
q

of Hq norm 1 (q ≥ 1) with a0 = fc(0) = c and a1 = f ′c(0) = 2
q
c1− q

2

√
1− cq, for

any 2−
1
q ≤ c < 1. Then for any fixed 0 < r < 1, one can choose c close enough

to 1 so that
|a0|+ |a1|r > 1.

Since the Hq norm for 0 < q < 1 is weaker than the H1 norm, no such positive
r exists for 0 < q < 1 either. However, if one begins taking powers of the
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coefficients of the power series of f, one can ask whether a version of Bohr’s
theorem would hold in that case. For example, given p and q, does there exist
r > 0 such that

‖f‖Hq ≤ 1 ⇒
∞∑

n=0

|an|prn ≤ 1?

For 1 ≤ q ≤ 2 and p = q
q−1

, the above is certainly true with r = 1, by the

Hausdorff-Young inequality. For q > 2 and p again the conjugate exponent,
there is no such r, again by [7, Corollary 6.3]. If q = ∞ and 0 < p < 1, there is
no such positive r either (cf also [4]): let 0 < ε < 1

2
and let fε(z) = a + bz where

a = 1− 2ε and b = ε. Then

‖fε‖H∞ = a + b < 1,

but ap + bpr can be made bigger than 1, because 1−ap

bp → 0 as ε → 0. We can also
consider the function

f(z) =
c + z

1 + cz
for some 0 < c < 1, then

∞∑
n=0

|an|prn = cp + (1− c2)p r

1− cpr
.

This last sum is less than 1 when

r <
1− cp

(1− c2)p
(1 + cp)

which goes to 0 as c goes to 1 (0 < p < 1.) On the other hand, for each p ≥ 1
and ‖f‖∞ ≤ 1, since

∞∑
n=0

|an|prn ≤
∞∑

n=0

|an|rn

it is certainly true that there exists Rp ≥ 1
3

such that

‖f‖H∞ ≤ 1 ⇒
∞∑

n=0

|an|prn ≤ 1

for r ≤ Rp. It is an open problem to find the best possible Rp (called the Bohr
radius) in this case.

Djakov and Ramanujan studied the growth of series of the type
∑
|an|prn for

bounded analytic functions in [11]. They obtained bounds on the Bohr radii Rp

and extended their results to a several variables context. For analytic functions of
several variables, there is no domain for which the Bohr radius is known exactly.
However, Boas and Khavinson had previously obtained bounds on the Bohr radii
for any complete Reinhardt domain in [9]. They noticed that the radii depend on
the dimension of the space being considered and tend to zero as the dimension
increases. In particular, there is no Bohr radius for holomorphic functions of
infinitely many variables, contrary to what Bohr himself had probably envisioned
(cf. [10].) Aizenberg, Aytuna, Djakov, and Tarkhanov, in a series of papers (cf.
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[1, 2, 3, 5]) have studied Bohr phenomena in Cn and also for various bases
different from that of monomials in spaces of analytic and harmonic functions
equipped with a supremum-type norm. For further ramifications and extensions,
see Boas’ very nice survey [8]. Applications of Bohr phenomena to operator
theory and other recent related references in that direction can be found in [20].
When the final version of this paper was being prepared, we became aware of a
recent paper of Aizenberg, Grossman, and Korobeinik (cf. [4]) who obtain some
further asymptotics for Bohr radii in the spirit of Djakov and Ramanujan. Our
results in Section 2, although obtained independently, are quite similar in spirit
to their discussion in that paper, although the discussion in [4] is restricted to
bounded analytic functions, while our focus is on more general Hardy spaces.

We begin by studying series of the type
∑
|an|prn (particularly when 0 < p < 2)

for analytic functions f in the unit ball of Hs, s > 0. We then consider Bohr-
type phenomena in rather general normed spaces of analytic functions. As one
of the more surprising consequences, we obtain essentially “free of charge” most
general Schwarz-Pick estimates for derivatives of bounded analytic functions (cf.
[18, 19].) Finally, we extend our results to functions of several variables.

Acknowledgement. The authors are indebted to the referee for pointing out
references [6, 21, 22] and for helpful suggestions regarding the exposition.

2. On absolute radial convergence in Hardy spaces

Fix 0 < p < ∞ and 0 < r < 1. For f analytic in the unit disc with Taylor
expansion f(z) =

∑∞
n=0 anz

n, we write

‖f‖p,r =

(
∞∑

n=0

|an|prn

)1/p

.

Given such a function f we shall always write an for the n-th Taylor coefficient
of f .

Our first result concerns the growth of ‖f‖p,r as r → 1− for Hardy space functions
f .

Theorem 2.1. Fix 0 < p < 2 and suppose f ∈ Hs, for some 0 < s ≤ ∞. Then
the following hold:
(i) If 0 < s ≤ 2, then

‖f‖p,r = o((1− r)−t), as r → 1−,

where t = 1/p + 1/s− 1.
(ii) If 2 ≤ s ≤ ∞, then

‖f‖p,r = o((1− r)−t), as r → 1−,

where t = 1/p− 1/2.

Remark.For p = 1 and s = 2 this result and the proof are due to Hardy (cf.
[17]). Note that the case p ≥ 2 is still open, besides the trivial cases covered
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by the Hausdorff-Young theorem as noted in the Introduction. Thus, extending
Theorem 2.1 to treat the case p > 2 and 0 < s < p/(p − 1) remains an open
problem.

Proof. In the proof we write an for the n-th Taylor coefficient of f . First assume
1 < s ≤ 2. By the Hausdorff-Young inequality ([12], Theorem 6.1)

(1)
∞∑

n=0

|an|s
′ ≤ ‖f‖s′

Hs ,

where s′ is the conjugate exponent of s, i.e. s′ = s/(s − 1). For any integer m
we have

(2)
∞∑

n=0

|an|prn ≤
m∑

n=0

|an|p +
∞∑

n=m+1

|an|prn.

By Hölder’s inequality and (1) we have

∞∑
n=m+1

|an|prn ≤

(
∞∑

n=m+1

|an|s
′

)p/s′ ( ∞∑
n=m+1

rnq

)1/q

≤

(
∞∑

n=m+1

|an|s
′

)p/s′

(1− rq)−1/q ≤ ‖f − fm‖p
Hs(1− rq)−1/q

where fm(z) =
∑m

n=0 anz
n and q = s′/(s′ − p) is the conjugate exponent to s′/p

(note that s′/p > 1). Thus by (2)

(3) lim sup
r→1−

(1− r)1/q‖f‖p
p,r ≤ q−1/q‖f − fm‖p

Hs ,

which tends to 0 as m → ∞. Since 1/qp = 1/p − 1/s′ = 1/p + 1/s − 1, this
proves (i) for 1 < s ≤ 2.

For s ≥ 2 we have ‖f‖H2 ≤ ‖f‖Hs , and hence a calculation similar to the
preceding one with q = 2

2−p
shows that

lim
r→1−

(1− r)1/q‖f‖p
p,r = 0,

which proves (ii) with t = 1/qp.

The remaining case, 0 < s ≤ 1, follows from the slightly more general proposition
below, since in that case, |an| = o(n1/s−1) (cf. [12], Theorem 6.4). 2

Proposition 2.2. Fix α > −1. Suppose f(z) =
∑∞

n=0 anz
n is analytic in the

unit disc and suppose |an|p = o(nα). Then∑
n≥0

|an|prn = o((1− r)−1−α), as r → 1−.

Proof. First we recall that

(4) (1− z)−β =
∞∑

n=0

Γ(n + β)

Γ(β)n!
zn.
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We claim that there is a constant Cβ such that

(5)
Γ(n + β)

n!
≥ Cβnβ−1

for β > 0 and n = 1, 2, 3, . . . For n = 1 this is obvious, so we may assume n ≥ 2.
By the convexity of log Γ on (0,∞) we have

log Γ(n)− log Γ(n− 1)

n− (n− 1)
≤ log Γ(n + β)− log Γ(n)

n + β − n

which proves (5) with, say, Cβ = 2−β.

Now choose ε > 0 and then m so large that |an|p < εnα for all n ≥ m. Then∑
n≥0

|an|prn ≤
m−1∑
n=0

|an|p + ε
∑
n≥m

nαrn.

With β = α + 1 in (4) and C = C−1
β in (5) we obtain∑

n≥m

nαrn ≤ C(1− r)−α−1.

Since α > −1 we get

lim
r→1−

(1− r)1+α
∑
n≥0

|an|prn ≤ Cε

and the result follows. 2

In connection with Theorem 2.1 it is natural to consider the uniform growth of
the norms ‖f‖p,r as the functions f vary in Hs. Formally, we consider

C(r, p, s) = sup{‖f‖p,r : f ∈ Hs, ‖f‖Hs ≤ 1},

where, as before, 0 < p < 2, 0 < s ≤ ∞ and 0 < r < 1. A consequence of the
following result is that the exponent in Theorem 2.1 cannot be improved in the
case s > 1/2.

Theorem 2.3. Let 0 < p < 2. Then the following hold:
(i)

lim
r→1−

(1− r)1/p−1/2C(r, p, 2) = (1− p/2)1/p−1/2.

(ii) For s ∈ (1, +∞]

lim sup
r→1−

(1− r)tC(r, p, s) ≤ (pt)t,

where t = 1/p + 1/s− 1 for 1 < s ≤ 2 and t = 1/p− 1/2 for s ≥ 2.
(iii) If s ∈ (1/2, 2] and t = 1/p + 1/s− 1, then

lim inf
r→1−

(1− r)tC(r, p, s) ≥
(

2s− 1

2s+1s

)1/s

e−1/p(1− e−2)1/p > 0.



6 CATHERINE BÉNÉTEAU, ANDERS DAHLNER, AND DMITRY KHAVINSON

(iv) If s ≥ 2 and t = 1/p− 1/2, then

lim inf
r→1−

(1− r)tC(r, p, s) ≥ (1− e−1)
1
p > 0.

Remark.The case s = ∞ in part (iv) of Theorem 2.3 gives a simplified and
slightly sharper version of Theorems 2 and 3 in [11]; however, the main idea of
using Kahane polynomials in the construction comes from the proof there.

We need the following lemma.

Lemma 2.4. For n = 0, 1, 2, . . . , let Kn be the Fejér kernel,

Kn(eit) =
∑
|k|≤n

(
1− |k|

n + 1

)
eit =

1

n + 1

(
sin (n+1)t

2

sin t
2

)2

.

For each s ∈ (1/2,∞) we have

1

2π

∫ π

−π

|Kn(eit)|sdt ≤ 2s

2s− 1
(n + 1)s−1

for all n.

This follows immediately from the inequality

Kn(eit) ≤ min

(
n + 1,

π2

(n + 1)t2

)
, t ∈ (0, π).

We remark that estimates of sin (n+1)t
2

from below, using sums of step functions,
show that the corresponding statement is false for s ≤ 1/2.

We now turn to the proof of Theorem 2.3

Proof. Part (ii) can be read out from the proof of Theorem 2.1. We omit the
details. To prove (i) observe that by (ii) (or (iii)), it is sufficient to prove that

lim inf
r→1−

(1− r)1/p−1/2C(r, p, 2) ≥ (1− p/2)1/p−1/2.

Fix an integer n > 0, r ∈ (0, 1) and let a > 0. Consider the polynomial

Pn,r,a(z) =
∑n

k=0 rakzk = 1−ra(n+1)zn+1

1−raz
(|z| < 1), and let Qn,r,a = Pn,r,a/‖Pn,r,a‖H2 .

A straighforward calculation yields

‖Qn,r,a‖p,r =

(
n∑

k=0

r(ap+1)k

)1/p

(
n∑

j=0

r2aj

)1/2
=

(
1− r(ap+1)(n+1)

1− rap+1

)1/p

(
1− r2a(n+1)

1− r2a

)1/2
.

Hence

(1− r)1/p−1/2C(r, p, 2) ≥ (1− r)1/p

(1− rap+1)1/p

(1− r2a)1/2

(1− r)1/2

(
1− r(ap+1)(n+1)

)1/p(
1− r2a(n+1)

)1/2
.
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Now fix α > 0 and let (r, n) → (1,∞) so that (1− r)(n + 1) → α. Then

lim inf
r→1−

(1− r)1/p−1/2C(r, p, 2) ≥ (2a)1/2

(ap + 1)1/p

(
1− e−α(ap+1)

)1/p(
1− r−2aα

)1/2
.

Letting α →∞ we get

lim inf
r→1−

(1− r)1/p−1/2C(r, p, 2) ≥ (2a)1/2

(ap + 1)1/p
.

For the choice a = 1/(2 − p) we have (2a)1/2/(ap + 1)1/p = (1 − 2/p)1/p, which
proves (i).

To prove (iii) put Pn(z) = z2n+1Vn(z), where Vn is the de la Vallée-Poussin kernel,
defined by Vn = 2K2n+1 −Kn, and Kn is the Fejér kernel (cf. Lemma 2.4). By
Minkowski’s inequality and Lemma 2.4, we have

‖Pn‖s
Hs ≤ 2

2s

2s− 1
(2n + 2)s−1 +

2s

2s− 1
(n + 1)s−1 = Cs

s(n + 1)s−1,

where Cs = (2s+1s/(2s− 1))1/s. Note that the k-th Fourier coefficient of Vn is 1
for |k| ≤ n, so that

‖Pn‖p,r

‖Pn‖Hs

≥ 1

‖Pn‖Hs

∑
|k|≤n

rk+2n+1 + a positive quantity

1/p

>
r(n+1)/p

‖Pn‖Hs

(
1− r2n+1

1− r

)1/p

≥ r(n+1)/p

Cs(n + 1)1−1/s

(
1− r2n+1

1− r

)1/p

.

From the above we get

(1− r)1/p+1/s−1C(r, p, s) ≥ r(n+1)/p

Cs((n + 1)(1− r))1−1/s
(1− r2n+1)1/p.

Putting r = 1− 1/(n + 1) and letting r → 1− yields

lim inf
r→1−

(1− r)1/p+1/s−1C(r, p, s) ≥ C−1
s e−1/p(1− e−2)1/p > 0.

It remains to prove (iv). Following [11], let ε > 0 and pick an integer nε and
polynomials Pn(z) =

∑n
k=0 aknz

k with |akn| = 1 such that

sup
z∈D

|Pn(z)| ≤ (1 + ε)
√

n + 1

for all n > nε. Existence of such polynomials were proved by J.-P. Kahane (cf.
for example [15]). This implies

C(r, p,∞) ≥ ‖Pn‖p,r

(1 + ε)
√

n + 1
=

1

(1 + ε)
√

n + 1

(
1− rn+1

1− r

)1/p

for every r ∈ (0, 1) and n large enough. Put r = 1 − 1/(n + 1), let r → 1− and
then ε → 0+ to obtain

lim inf
r→1−

(1− r)1/p−1/2C(r, p,∞) ≥ (1− 1/e)1/p.



8 CATHERINE BÉNÉTEAU, ANDERS DAHLNER, AND DMITRY KHAVINSON

2

Remark. It seems to be a hard task to find non-trivial estimates of C(r, p, s) for
s ≤ 1/2. In fact, the “obvious” exponent might not even be the correct one (see
the remark following Lemma 2.4).

It is interesting to note that if we consider functions whose first few Taylor
coefficients vanish, we can sometimes obtain more accurate information.

Theorem 2.5. Let 0 < p < 2 and let m ≥ 1 be an integer.

(a) If 1 < s ≤ 2 and f(z) =
∑∞

n=m anz
n ∈ Hs then

‖f‖p
p,r ≤

rm

(1− rq)
1
q

‖f‖p
Hs ,

where q = s
s+p−ps

. In particular, if rqm + rq ≤ 1, then

‖f‖p
p,r ≤ ‖f‖

p
Hs .

(b) If f(z) =
∑∞

n=m anz
n ∈ Hs then

‖f‖p
p,r ≤

rm

(1− rq)
1
q

‖f‖p
Hs ,

where q = 2
2−p

. In particular, if rqm + rq ≤ 1, then

‖f‖p,r ≤ ‖f‖Hs .

(c) If s = 2 and q = 2
2−p

, then the inequality in (b) is sharp. In particular, if

f(z) =
∑∞

n=m anz
n ∈ H2 then

‖f‖p,r ≤ ‖f‖H2 for every f in H2 if and only if rqm + rq ≤ 1.

(d) If s ≥ 2 and m = 1, then

‖f‖p,r ≤ ‖f‖Hs for every f in Hs if and only if r ≤ 2−
1
q .

Remark.For the case s = ∞, similar results and related extremal problems can
be found in [4, 8, 11].

Proof. The proof of part (a) is very similar to that of the case 1 < s ≤ 2 of part
(i) in Theorem 2.1. Also note that

∞∑
n=m

|an|prn ≤ ‖f‖p
Hs

when rm

(1−rq)
1
q
≤ 1, that is, when rqm + rq ≤ 1.

(b) If f(z) =
∑∞

n=m anz
n ∈ Hs then by Hölder’s inequality,

∞∑
n=m

|an|prn ≤ (
∞∑

n=m

|an|2)
p
2 (

∞∑
n=m

rqn)
1
q

= ‖f‖p
H2

rm

(1− rq)
1
q

≤ ‖f‖p
Hs

rm

(1− rq)
1
q
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for s ≥ 2.

(c) Notice that if s = 2 and c is any constant such that |an|2 = crnq, we have
equality in the Hölder application above. Let R be the unique solution in (0, 1)
to

Rqm + Rq = 1.

Let r be such that R < r < 1 and define

c =
rmq

1− rq
>

Rmq

1−Rq
= 1.

Define an = 1√
c

√
rnq. Then

∞∑
n=m

|an|2 =
1

c

∞∑
n=m

rnq =
1

c

rmq

1− rq
= 1.

Therefore

f(z) =
∞∑

n=m

anz
n ∈ H2

and ‖f‖H2 = 1. However,

∞∑
n=m

|an|prn = ‖f‖p
H2

rm

(1− rq)
1
q

=
rm

(1− rq)
1
q

> 1.

Therefore Bohr’s inequality does not hold and the Bohr radius for this problem
is exactly the solution to

Rqm + Rq = 1.

(d) If s ≥ 2 and m = 1, we consider the function

φa(z) = z
a− z

1− az

for 0 < a < 1. Then ‖φa(z)‖Hs = 1 and if we write φa(z) =
∑∞

n=1 anz
n, then

∞∑
n=1

|an|prn = apr + r2 (1− a2)p

1− apr
.

Therefore
∞∑

n=1

|an|prn > 1

if and only if

(1− a2)pr2 − a2pr2 + 2apr > 1.

If we choose a = 1√
2
, then the above inequality holds exactly when r > 2−

1
q . 2
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Remark.The theorem still leaves unresolved the following question: if s > 2 and
m > 1, is it true that

‖f‖p,r ≤ ‖f‖Hs if and only if rqm + rq ≤ 1?

Also, for the case 0 < s ≤ 1, it is possible, for example using the techniques
of Proposition 2.2, to prove norm estimates similar to those in (a) and (b) of
Theorem 2.5. However, we have been unable to control the constants involved
(in the proof of Proposition 2.2 and Theorem 6.4 in [12].) Accordingly, we failed
to obtain sharp estimates for these values of s.

We now turn to a discussion of Bohr’s phenomenon in more general normed
spaces of analytic functions.

3. Renorming

Let X be a Banach space of analytic functions in the disk. In the following
discussion, we will assume that polynomials are dense (or weakly dense) in X,
that the set of bounded point evaluations is the disk, and that if f ∈ X with
‖f‖X ≤ 1 is not constant then |f(0)| < 1. We say that a Bohr phenomenon holds
for X if there exists r > 0 such that whenever f(z) =

∑∞
n=0 anz

n ∈ X,

‖f‖X ≤ 1 =⇒
∞∑

n=0

|an|rn ≤ 1.

The largest such r is called the Bohr radius.

We have already noticed that there is no Bohr phenomenon for H2. However, we
can modify the definition of the norm of a function in X = H2 slightly and force
a Bohr phenomenon to occur: for f(z) =

∑∞
n=0 anz

n ∈ H2, define

‖f‖X = |a0|+

√√√√ ∞∑
n=1

|an|2.

This norm is equivalent to the usual H2 norm. Notice that for ‖f‖X ≤ 1,
|an| ≤ 1− |a0|. Hence, for such a function in the unit ball of X,

∞∑
n=0

|an|rn ≤ |a0|+
∞∑

n=1

(1− |a0|)rn ≤ 1

whenever r ≤ 1
2
. Therefore X has a Bohr radius of at least 1

2
! This raises the

question of characterizing the norms that give rise to a Bohr phenomenon. It
turns out that the following necessary and sufficient condition must hold.

Theorem 3.1. Let X be as above. Then Bohr’s phenomenon holds in X if and
only if

sup{( |f (n)(0)|
n!(1− |f(0)|)

)
1
n : ‖f‖X ≤ 1, |f(0)| < 1, n ≥ 1} = C < ∞.
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Proof. Suppose a Bohr phenomenon holds in X and let R > 0 be the Bohr radius.
Then for any function

f(z) =
∞∑

n=0

anz
n ∈ X

with ‖f‖X ≤ 1 and for any integer n ≥ 1,

|a0|+ |an|Rn ≤ 1.

Therefore

(
|f (n)(0)|

n!(1− |f(0)|)
)

1
n ≤ 1

R
< ∞.

On the other hand, suppose that for each

f(z) =
∞∑

n=0

anz
n ∈ X

such that ‖f‖X ≤ 1, f 6= 1, we have

(
|an|

1− |a0|
)

1
n ≤ C

for n ≥ 1. Then
∞∑

n=0

|an|rn ≤ |a0|+ (1− |a0|)
∞∑

n=1

Cnrn

= |a0|+ (1− |a0|)
Cr

1− Cr
≤ 1

whenever r ≤ 1
2C

. Therefore a Bohr phenomenon holds and in fact the Bohr

radius is at least 1
2C

. 2

Example 1. We have already seen that if X = Hq, q ≥ 1, for 2−
1
q ≤ c < 1, the

family of functions

fc(z) = (c
q
2 +

√
1− cqzn)

2
q

discussed in the introduction satisfy (for n = 1!)

sup
2−1/q≤c<1

|f ′c(0)|
1− |fc(0)|

= sup
2−1/q≤c<1

2
q
c1− q

2

√
1− cq

1− c
= ∞.

Therefore, as we already know, there is no Bohr phenomenon for Hq (1 ≤ q < ∞)
with the usual norm.

Example 2. Let X be the space of analytic functions f(z) =
∑∞

n=0 anz
n in the

disk such that the following norm is finite:

‖f‖X = |a0|+

√√√√ ∞∑
n=1

|an|2
n + 1

.
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This is of course a norm equivalent to the usual A2 (the Bergman space) norm.
Recall that in the usual Bergman space, there is no Bohr phenomenon (since

there is none even in H2.) Notice that if ‖f‖X ≤ 1, then |a0|+ |an|√
n+1

≤ 1, so

(
|an|

1− |a0|
)

1
n ≤ (n + 1)

1
2n .

The left hand side attains the value on the right for the function f(z) = |a0| +
(1− |a0|)

√
n + 1zn. The quantity (n + 1)

1
2n is decreasing and therefore

sup{( |f (n)(0)|
n!(1− |f(0)|)

)
1
n : ‖f‖ ≤ 1, |f(0)| < 1, n ≥ 1} =

√
2.

Hence according to the proof of the Theorem 3.1, we know that X has a Bohr
radius of at least 1

2
√

2
.

Example 3. Since we know there is a positive Bohr radius for H∞ and not
for Hq (0 < q < ∞) with the standard norms, it might be interesting to see
what happens in the case of an intermediate space such as the BMO space (cf.
[13].) Because the Bohr phenomenon is sensitive to different norms, the question
of which norm to use becomes important. For example, if we define the BMO
norm on H1 modulo the constants and use the norm that arises from considering
BMO modulo the constants as a subspace of the dual space of H1, then there is
a positive Bohr radius. In other words, suppose f(z) =

∑
anz

n ∈ BMO, then
‖f − f(0)‖BMO = ‖f‖BMO. Therefore without loss of generality, f vanishes at
the origin. Applying f (as a linear functional on H1) to zn gives rise to an, so if
‖f‖BMO ≤ 1, as a consequence |an| ≤ 1. In that case,

∞∑
n=1

|an|rn ≤
∞∑

n=1

rn =
r

1− r
≤ 1

whenever r ≤ 1
2
. However, this comes as no surprise, since if we consider Hq

functions that vanish at the origin, there is always a Bohr radius of at least 1
2

in
exactly the same manner. What happens if we factor in constants, still thinking
of BMO normed as a dual space to H1?

Question. For f ∈ BMOA, let ‖f‖BMO := ‖f‖(H1)∗ . Is it true that

sup{( |f ′(0)|
(1− |f(0)|)

) : ‖f‖BMO ≤ 1, |f(0)| < 1} < ∞?

However, suppose we define the norm as follows: for

f(z) =
∞∑

n=0

anz
n ∈ BMOA,

let

‖f‖ := |f(0)|+ ‖f − f(0)‖BMO(T )
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where T is the unit circle and ‖g‖BMO(T ) is the usual Garsia BMO norm (cf.
[13].) Then for any function g ∈ BMO, since ‖g‖L1(T ) ≤ ‖g‖BMO(T ) (cf. [13, pp.
224-225]), if ‖f‖ ≤ 1 and n ≥ 1,

|an| ≤ ‖f − f(0)‖L1 ≤ ‖f − f(0)‖BMO(T ) ≤ 1− |f(0)|.

Therefore
∞∑

n=0

|an|rn ≤ |f(0)|+ (1− |f(0)|) r

1− r
≤ 1

whenever r ≤ 1
2
. In fact, if X is any normed space of analytic functions such that

the norm on X dominates the L1 norm, this same argument shows that defining
a new norm

‖f‖new := |f(0)|+ ‖f − f(0)‖old

will always force a positive Bohr radius of at least 1
2
.

It is worth noticing that Bohr’s phenomenon holds for all points in the disk.
Let’s suppose that X is a space whose norm behaves “well” with respect to
translations and dilations, namely, satisfies the following condition:

(*) suppose f is a function in X such that ‖f‖X ≤ 1. Then for
any z0 ∈ D and radius r > 0 such that the disk D(z0, r) centered
at z0 of radius r is contained in the unit disk,

‖f(z0 + rz)‖X ≤ 1.

Remark.Of course, the natural assumption that the norm in X is lower semi-
continuous with respect to pointwise convergence immediately implies that if X
satisfies (*), it is a subspace of H∞, simply by letting r → 0 in (*).

If such a space X satisfies the Bohr phenomenon with Bohr radius R, fix any z0 in

the disk and take the Taylor expansion of a function f(z) =
∑∞

n=0
f (n)(z0)

n!
(z−z0)

n

about z0 in the disk of radius 1− |z0|. We obtain

∞∑
n=0

|f
(n)(z0)

n!
||z − z0|n ≤ 1

for |z−z0| ≤ (1−|z0|)R. To see this, we simply apply a linear change of variables,
mapping the unit disk to the disk centered at z0 of radius 1 − |z0|. This allows
us to put the above criterion in invariant form.

Theorem 3.2. (Invariant criterion) Let X be a Banach space of analytic func-
tions on the disk as in the previous theorem satisfying condition (*). Then Bohr’s
phenomenon holds in X if and only if for every z0 ∈ D,

sup{( |f
(n)(z0)|(1− |z0|)n

n!(1− |f(z0)|)
)

1
n : ‖f‖X ≤ 1, |f(z0)| < 1, n ≥ 1} = C < ∞

where the constant C depends only on the Bohr radius and not on z0.

Using Stirling’s formula, we obtain the following.
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Corollary 3.3. Let X be a Banach space of analytic functions as in Theorem
3.2 with Bohr radius RX . Then for any function f in the unit ball of X,

sup
z∈D

lim sup
n→∞

|f (n)(z)| 1n (1− |z|)
n

≤ e

RX

.

Applying Theorem 3.2 to X = H∞, we obtain the following.

Corollary 3.4. Let f ∈ H∞ be such that ‖f‖∞ < 1. Then for each integer
n ≥ 1,

sup
z∈D

|f (n)(z)|(1− |z|2)n

1− |f(z)|2
≤ 6nn! < ∞.

This result is contained in a recent paper [18]. In [18], it is obtained via different
methods using a chain of composition operators on Bloch spaces. However,
sharper results were known earlier - see Remark (i) below.

Proof. Notice that

|f (n)(z)|(1− |z|2)n

(1− |f(z)|2)
≤ |f (n)(z)|(1− |z|)n

n!(1− |f(z)|)
2nn!

By Theorem 3.2 and the proof of Theorem 3.1, and since the Bohr radius for
H∞ is 1/3, this last expression is less than 6nn!. 2

Remark. (i) Instead of using Theorem 3.2, by composing f with a Mobius trans-
formation, we could directly extend F. Wiener’s estimate for the coefficients of
bounded functions (cf. [10]) into the invariant form to obtain

sup
z∈D

|f (n)(z)|(1− |z|)n

1− |f(z)|2
≤ n!,

which is sharper but still not sharp for a fixed z in D − {0} (cf. [7] for the
discussion at z = 0.) This leads to a slightly better constant 2nn!. The sharp
constant, 2n−1n!, was obtained by classical methods in Ruscheweyh (cf [21].)
Further extensions and generalizations can be found in [6, 22]. However, the
“abstract nonsense” approach allows one to obtain at no cost similar estimates
in several variables (cf. Section 4) in situations where the estimates of the Taylor
coefficients are more involved.

(ii) As was noted before, for all practical purposes, (*) forces the space X to
be inside H∞. Yet for the norms equivalent to the standard norms in Hardy or
Bergman spaces that force Bohr’s phenomenon to take place (such as some of
the norms considered in this section), some version of (*) holds with constants
that depend on the radius r (distance from the point z to the unit circle.) In
addition, there are often known simple growth estimates for functions in that
space that also depend on r. In that case, one can carry out the above scheme
and obtain pointwise estimates similar to Corollary 3.4 for the derivatives. We
shall omit the details.
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4. Functions of several variables

The above scheme applies to a several variables context as well. We will use the
standard multivariate notations as in [9]: we write an n-variable power series∑

α cαzα where α = (α1, α2, ..., αn) is an n-tuple of non-negative integers, |α| =
α1 + α2 + ... + αn, α! = α1!α2!...αn!, z = (z1, z2, ..., zn) is an n-tuple of complex
numbers, and zα = zα1

1 zα2
2 ...zαn

n . We consider analytic functions defined on the
unit polydisk Dn = {z : max1≤j≤n |zj| < 1}. We will denote by Dα the derivative

∂|α|

(∂z1)α1 ...(∂zn)αn
.

The following theorem is a several variable analogue of Theorem 2.5, b). (Exten-
sions of most of the other results in Section 2 could be carried out in a manner
similar to that of [11], and we omit them.)

Theorem 4.1. Let 0 < p < 2 and q = 2
2−p

. Let f(z) =
∑

α cαzα ∈ H2(Dn) be

such that

‖f‖H2(Dn) :=
∞∑

|α|=0

|cα|2 ≤ 1

and c0 = 0. Then ∑
α

|cα|p|zα| < 1

for any z ∈ RnD
n, where Rn ≤ ( 1

2n
)

1
q .

Proof. Let z = Rw for w ∈ Dn. Then∑
α

|cα|p|zα| =
∑

α

|cα|p|(Rw)α|

=
∑

α

|cα|p|wα|R|α|

≤ (
∑

α

(|cα|p|wα|)
2
p )

p
2 (
∑

α

|R|α|q)
1
q

(by Hölder’s inequality)

= (
∑

α

(|cα|2|wα|
2
p ))

p
2 (

∞∑
k=1

∑
|α|=k

Rkq)
1
q

≤ (
∑

α

|cα|2)(
∞∑

k=1

(Rq)knk)
1
q

≤ 1 (when R ≤ (
1

2n
)

1
q ).

2

In a similar manner, we can extend Theorem 3.1 to several variables.
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Theorem 4.2. Let X be a Banach space of analytic functions from Dn into C
such that polynomials are dense in X, the set of bounded point evaluations is
Dn, and if f ∈ X with ‖f‖X ≤ 1 is not constant then |f(0)| < 1. Then Bohr’s
phenomenon holds in X if and only if

sup{ |(Dαf)(0)|
α!(1− |f(0)|)

)
1
|α| : ‖f‖X ≤ 1, |f(0)| < 1, α ∈ Nn, α 6= 0} < ∞.

We leave it to the reader to restate Theorem 4.2 in a point-invariant form simi-
larly to Theorem 3.2.

In particular, if we are interested in bounded functions on the polydisk, we have
a several variable analogue of Corollary 3.4.

Corollary 4.3. Let f be an analytic function from Dn to D. Then for each
multi-index α,

(6) sup
z∈Dn

|(Dαf)(z)|(1− |z1|2)α1(1− |z2|2)α2 ...(1− |zn|2)αn

1− |f(z)|2
< ∞.

Notice that applying (6) coordinate-wise, one can easily extend this result to
mappings from the polydisk into itself. Moreover, since as is shown in [9], Bohr’s
radius for any complete Reinhardt domain G is positive, Corollary 4.3 immedi-
ately extends to all such domains and accordingly, for example to holomorphic
mappings of the unit ball into itself, a recent result of MacCluer, Stroethoff, and
Zhao (cf. [19].)
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