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W
avelet theory was an immensely

popular research area in the

1990s that synthesized ideas from

mathematics, physics, electrical en-

gineering, and computer science. In

mathematics, the subject attracted researchers

from areas such as real and harmonic analysis, sta-

tistics, and approximation theory, among others.

Applications of wavelets abound today—perhaps

the most significant contributions of wavelets can

be found in signal processing and digital image

compression. As the basic tenets of wavelet theory

were established, they became part of graduate

school courses and programs, but it is only in

the last ten years that we have seen wavelets

and their applications being introduced into the

undergraduate curriculum.

The introduction of the topic to undergrad-

uates is quite timely—most of the foundational

questions posed by wavelet researchers have been

answered, and several current applications of

wavelets are firmly entrenched in areas of image

processing. Several authors [7, 2, 8, 14] have writ-

ten books in which they present the basic results

of wavelet theory in a manner that is accessible

to undergraduates. Others have authored books

[15, 13, 1, 9] that include applications as part of

their presentation.
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In much the same way that wavelet theory

is the confluence of several mathematical disci-

plines, we have discovered that the discrete wavelet

transformation is an ideal topic for a modern un-

dergraduate class—the derivation of the discrete

wavelet transformation draws largely from calcu-

lus and linear algebra, provides a natural conduit

to Fourier series and discrete convolution, and

allows near-immediate access to current appli-

cations. Students learn about signal denoising,

edge detection in digital images, and image com-

pression, and use computer software in both

the derivation and implementation of the dis-

crete wavelet transformation. In the process of

investigating applications, students learn how

the application often drives the development of

mathematical tools. Finally, the design of more ad-

vanced wavelet filters allows the students to gain

experience “working in the transform domain”

and provides motivation for several important

concepts from an undergraduate real analysis

class.

In what follows, we outline the basic devel-

opment of discrete wavelet transformations and

discuss their connection with Fourier series, con-

volution, and filtering. In the process, we illustrate

the application of discrete wavelet transforma-

tions to digital images. We next construct one pair

of filters that are used by the JPEG2000 image

compression standard. We conclude the paper by

illustrating how wavelet filters are implemented

by the JPEG2000 standard.

Let us begin by discussing the simplest discrete

wavelet transformation.

656 Notices of the AMS Volume 58, Number 5



The Discrete Haar Wavelet Transformation

The discrete Haar wavelet transformation is the

most elementary of all discrete wavelet transforms

and serves as an excellent pedagogical tool for

the development of more sophisticated discrete

wavelet transformations and their application to

digital signals or images.

We motivate this transformation as follows:

Suppose we wish to transmit a list (vector) of

N numbers, N even, to a friend via the Inter-

net. To reduce transfer time, we decide to send

only a length N/2 approximation of the data.

One way to form the approximation is to send

pairwise averages of the numbers. For example,

the vector [6,12,15,15,14,12,120,116]T can be

approximated by the vector [9,15,13,118]T . Of

course, it is impossible to determine the original

N numbers from this approximation, but if, in

addition, we transmit the N/2 averaged directed

distances, then our friend could completely recover

the original data. For our example, the averaged

directed distances are [3,0,−1,−2]T .

We define the one–dimensional discrete Haar

wavelet transformation as the linear transforma-

tion

x→
[

a

d

]

,

where x ∈ RN , N even, and the elements of

a,d ∈ RN/2 are

ak = x2k−1 + x2k

2
,

dk =
−x2k−1 + x2k

2
,

where k = 1, . . . ,N/2. Given these averages and

differences, we can recover the original data.

In matrix form, the transformation can be

expressed as

W̃N =














































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2
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0 0 − 1
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2 0 0

...

0 0 0 0 ··· − 1
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




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
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=











H̃N/2

G̃N/2











(1)

with

(2) W̃−1
N = 2W̃ T

N = 2

[

H̃T
N/2 G̃TN/2

]

.

What is the advantage of transforming x into a
and d? The vector a gives us an approximation

of the original vector x, while d allows us to
identify large (or small) differences between the

pairwise averagesand the original data. Identifying
large differences might be of interest if we were
attempting to detect edges in a digital image,

for example. On the other hand, we might be
inclined to convert differences that are small
in absolute value to zero—this action, assuming

the original data were largely homogeneous, has
the effect of producing a large number of zeros

in the quantized differences vector d̃. In this
case, the modified transform is more amenable to

data coders in image compression applications.
Of course, we have no hope of recovering the
original vector x from the modified transform, but

depending on the application, the sacrifice of loss
of resolution for storage size might be desirable.

The Two-Dimensional Discrete Haar
Wavelet Transformation
If we view a grayscale digital image as an M × N
matrixAwhose entries are integers between 0 and
255 inclusive, where 0 represents black and 255

is white, and integers in between indicate varying
degrees of intensities of gray, then application
of the one-dimensional Haar wavelet transform

W̃M acts on the columns of A. Each column is
transformed to a column whose top half gives an

approximation, or blur, of the original column and
whose bottom half holds the differences or details
in the data.

We can process the rows of A as well by
multiplying W̃MA by W̃ T

N . We define the two-

dimensional discrete Haar wavelet transformation
of the matrix A to be W̃MAW̃

T
N . Of course, both M

and N must be even integers. An image (stored in
A), W̃MA, and W̃MAW̃

T
N are plotted in Figure 1.

We can better understand the image displayed
in Figure 1(c) if we express the two–dimensional

transformation in block form. Indeed, using (1)
and (2), we see that

W̃MAW̃
T
N =





H̃M/2

G̃M/2



A
[

H̃T
N/2 G̃TN/2

]

=




H̃M/2AH̃
T
N/2 H̃M/2AG̃

T
N/2

G̃M/2AH̃
T
N/2 G̃M/2AG̃

T
N/2





=
[

B V
H D

]

.

It is a straightforward computation to see that if
we partition A into 2×2 blocks Aj,k, 1 ≤ j ≤M/2,

1 ≤ k ≤ N/2, the (j, k) elements ofB,V ,H ,D are
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(a) A (b) W̃320A

(c) W̃320AW̃
T
512

Figure 1. A 320 x 512 digital grayscale image, the product W̃MAW̃MAW̃MA, and the two-dimensional discrete

Haar wavelet transformation W̃MAW̃
T
NW̃MAW̃
T
NW̃MAW̃
T
N .

constructed using the four values in Aj,k. Indeed,

if

Aj,k =
[

a b
c d

]

,

then each (j, k) element of B, V , H , D is

a+ b + c + d
4

(a+ c)− (b + d)
4

(a + b)− (c + d)
4

(a+ d)− (b + c)
4

,

respectively. In this way we see that the elements

ofB are simply the averages of the elements in the

blocks Aj,k, and the elements in V , H , and D are

averaged differences in the vertical, horizontal,

and diagonal directions, respectively.

IfM andN are divisible by 2p , then we can iterate

the transformation a total of p times. Figure 1(c)

shows one iteration of the discrete Haar wavelet

transformation. We can perform a second iteration

by applying the two-dimensional discrete Haar

wavelet transformation to B. Figure 2 shows two

and three iterations of the discrete Haar wavelet

transformation applied to A. In applications such

as image compression, the iterated transformation

produces more details portions, and in the case in

which the original data are largely homogeneous,

then we can expect a large number of near-zero

values in the details portions of the iterated

transform. These small values can be quantized

to zero, and the data coder should be able to

compress the modified transform in a highly

efficient manner.

(a) Two iterations

(b) Three iterations

Figure 2. Multiple iterations of the discrete
Haar wavelet transformation applied to the

matrix AAA from Figure 1(a).

Alternatively, we can use the averages portionB
in applications as well. Suppose we stored a four-

iteration version of an image on a web server. Then
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Figure 3. The wavelet transform of a digital image of Helaman Ferguson’s Four Canoes is shown
at the top left. The portion framed in blue is enlarged and transmitted. Next, the portion of the
transform outlined in yellow is transmitted and, with B4B4B4, inverted and enlarged to create the
image at top right. This process is repeated for the green, red, and brown portions of the
transform to progressively create a sequence of images whose resolution increases by a factor of
two at each step. The original image, outlined in brown, is at bottom right.

B4, the fourth iteration averages portion of the

transform, could serve as a thumbnail image for

the original. If a user requests the original image,

we could first transmit B4 and then progressively

send detail portions at each iterative level. The

recipient can apply the inverse transform as detail

portions are received to sequentially produce a

higher-resolution version of the original image.

Figure 3 illustrates the process.

Equation (2) tells us that the discrete Haar

wavelet transformation is almost orthogonal. In-
deed, if we define WN =

√
2W̃N , then W T

N = W−1
N ,

and our transformation is orthogonal. The inverse

of the transformation now has a simple form,

which allows us to easily reconstruct the signal

from its transformed version.

Relation to Discrete Convolution and
Filters

We have motivated the construction of WN by

insisting that WN transform the original data x

into an averages portion a and details portion d.

We could just as well develop WN via discrete
convolution.

Recall that if h and x are bi-infinite vectors,
then the convolution of h with x is the bi-infinite
vector y, denoted by y = h ∗ x, where the nth
component, n ∈ Z, of the vector is

yn =
∑

k∈Z
hkxn−k.

If we assume that xn = 0 for n < 1 and n > N,
where N is an even integer, then we can formWNx
by

• Computing u = h ∗ x, where the only
nonzero values of h are h0 = h1 =

√
2/2.

• Computing v = g ∗ x, where the only
nonzero values of g are g0 =

√
2/2 and

g1 = −
√

2/2.
• Downsampling u and v by removing the

odd components of each vector.
• Truncating the downsampled vectors ap-

propriately to obtain a and d.

The vectors h and g are often called filters. In fact,
h and g are special kinds of filters. Let x be a
vector whose elements xk = 1, k ∈ Z, and suppose
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y is a vector whose elements are yk = (−1)k, k ∈ Z.
Then h ∗ x = √

2 x and h ∗ y is the bi-infinite
zero vector. Thus h is an example of a lowpass
filter—it passes low-frequency signals through
largely unchanged but attenuates the amplitudes
of high-frequency data. In a similar manner we
see that g ∗ x is the bi-infinite zero vector and
g ∗ y = √2y. Here g is an example of a highpass
filter—it allows high-frequency signals to pass
largely unchanged but attenuates the amplitudes
of low-frequency data. Thus in filtering terms, the
discrete Haar wavelet transform is constructed by

applying a lowpass filter and a highpass filter to
the input data, downsampling both results, and
then appropriately truncating the downsampled
vectors. We will learn that all discrete wavelet
transforms are built from a lowpass (scaling) filter
h and a highpass (wavelet ) filter. Fourier series are
valuable tools for constructing these filters.

Fourier Series and Discrete Wavelet
Transformations
A course on discrete wavelet transformations is
an excellent venue for the introduction of Fourier
series into the undergraduate curriculum. There
are two main uses of Fourier series in such a
course. We can determine whether a finite-length
filter f = [f0, . . . , fL]T is lowpass or highpass by

plotting the modulus of the Fourier series

F(ω) =
L
∑

k=0

fke
ikω,

and, as we will see later, we can characterize a
(bi)orthogonal discrete wavelet transformation by
investigating an identity related to the Fourier
series of the scaling filter(s).

For the discrete Haar wavelet transformation,

the finite-length filters

h = [h0, h1]
T =

[√
2

2
,

√
2

2

]T

g = [g0, g1

]T =
[√

2

2
,−
√

2

2

]T

give rise to the Fourier series

H(ω) =
√

2

2
+
√

2

2
eiω

=
√

2eiω/2 cos

(

ω

2

)

(3)

G(ω) =
√

2

2
−
√

2

2
eiω

= −
√

2ieiω/2 sin

(

ω

2

)

(4)

for ω ∈ R. To determine the nature of the filter,

we plot |H(ω)| and |G(ω)|. Since |H(ω)| and
|G(ω)| are both 2π -periodic, even functions, we
plot them on the interval [0, π]. The functions are
displayed in Figure 4.

(a) |H(ω)|

(b) |G(ω)|

Figure 4. The functions |H(ω)||H(ω)||H(ω)| and |G(ω)||G(ω)||G(ω)|.

At the lowest frequency,ω = 0, |H(0)| = √2. At
the highest frequency, ω = π , |H(π)| = 0. In the

frequency domain, these two conditions indicate
that h is a lowpass filter. In a similar manner,
|G(0)| = 0 and |G(π)| = √2 are conditions that

imply that g is a highpass filter.
For ω ∈ R, we use (3) to write

|H(ω)|2 + |H(ω+π)|2 =

2 cos2

(

ω

2

)

+ 2 cos2

(

ω+π
2

)

= 2.(5)

In a similar manner, we use (3) and (4) to obtain

(6) |G(ω)|2 + |G(ω+π)|2 = 2

and

(7) H(ω)G(ω) +H(ω+π)G(ω+π) = 0.

In the next section, we will see that the first
step in a general strategy for finding longer, more

sophisticated filters h and g is to find h so that (5)
is satisfied and then make a judicious choice of
g so that (6) and (7) hold as well. The additional
lowpass conditions |H(0)| = √2 and |H(π)| = 0
with our choice of g ensure that the highpass
conditions |G(0)| = 0, |G(π)| = √2 hold, and in

this way, we see that all lowpass, highpass, and
matrix orthogonality conditions placed on filters
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h and g can be completely characterized using

Fourier series.

Daubechies Orthogonal Scaling Filters
Suppose we apply the one-dimensional discrete
Haar wavelet transformation to the vector v =
[0,0,100,100]T . We obtain the transformed vector√

2 [0,100| 0,0]T . The differences portion of the
transformed vector consists only of zeros, missing

the large “edge” between 0 and 100 in v. The

problem is that the Haar scaling/wavelet filter

pair is too short. Let’s consider longer filter pairs.
These filters and the corresponding wavelets were

discovered by Ingrid Daubechies (see, e. g., [4]).

We wish to construct an orthogonal matrix WN

that uses longer scaling and wavelet filters. It turns
out that we need to consider even-length filters, so

let’s start with a scaling filter h = [h0, h1, h2, h3]
T

and wavelet filter g = [g0, g1, g2, g3]
T . We insist

that

|H(0)| = |h0 + h1 + h2 + h3| =
√

2(8)

H(π) = h0 − h1 + h2 − h3 = 0(9)

and

G(0) = g0 + g1 + g2 + g3 = 0(10)

|G(π)| = |g0 − g1 + g2 − h3| =
√

2(11)

so that the filters h, g are lowpass and highpass,

respectively.

We also wish to retain the structure of the
transformation by suitably truncating two down-

sampled, convolution products. In this case, the

longer lengths of our filters force us to “wrap”
rows at the bottom of each block HN/2, GN/2 of

the matrix WN . For example, in the case in which

N = 8, WN takes the form

(12) W8 =































h3 h2 h1 h0 0 0 0 0

0 0 h3 h2 h1 h0 0 0

0 0 0 0 h3 h2 h1 h0

h1 h0 0 0 0 0 h3 h2

g3 g2 g1 g0 0 0 0 0

0 0 g3 g2 g1 g0 0 0

0 0 0 0 g3 g2 g1 g0

g1 g0 0 0 0 0 g3 g2































.

The wrapping rows cause problems in applications

since it inherently assumes that data are periodic,
but on the other hand, it simplifies our final

requirement that WN be an orthogonal matrix. In

this case, we must have

h2
0 + h2

1 + h2
2 + h2

3 = 1(13)

h0h2 + h1h3 = 0.(14)

It turns out that if real numbers h0, . . . , h3 satisfy

(9), (13), and (14), then (8) holds. We will choose

the positive square root so that

(15) h0 + h1 + h2 + h3 =
√

2.

We now set g = [h3,−h2, h1,−h0]
T . It is straight-

forward to show that if (9), (13), (14), and (15) hold,

then the highpass conditions (10), (11) are satisfied

and

g2
0 + g2

1 + g2
2 + g2

3 = 1

g0g2 + g1g3 = 0.

Moreover, we can show that

h0g0 + h1g1 + h2g2 + h3g3 = 0

h1g3 + h0g2 = 0

h3g1 + h2g0 = 0

so thatWN is an orthogonal matrix. However, there

are infinitely many solutions to the system

(16)

h2
0 + h2

1 + h2
2 + h2

3 = 1
h0h2 + h1h3 = 0

h0 + h1 + h2 + h3 =
√

2
h0 − h1 + h2 − h3 = 0

.

Here is where the Fourier series approach really

makes an impact. Daubechies chose to impose the

additional conditionH′(π) = 0. This condition has

the effect of “flattening” the graph of the modulus

|H(ω)| even more at ω = π ; thus intuitively the

filter h does an even better job of attenuating

the amplitudes of the high-frequency portions of

the input data. If we expand the left-hand side of

H′(π) = 0, we obtain the following linear equation

(17) h1 − 2h2 + 3h3 = 0,

and we add (17) to our system (16).

It turns out that there are two real solutions

to the system, one of which is a reflection of

the other. The solution can be solved by hand

(see, e. g., [12]) to obtain the Daubechies four-term

scaling filter :

h0 = 1+√3

4
√

2
, h1 = 3+√3

4
√

2

h2 = 3−√3

4
√

2
, h3 = 1−√3

4
√

2
.

The modulus of H(ω) is plotted in Figure 5.

Compare this graph with that of Figure 4.

In order to construct longer even-length fil-

ters h = [h0, . . . , hL]
T , L odd, we must write down

general orthogonality conditions and lowpass con-

ditions. We can ensure the orthogonality of WN

using the following theorem.

Theorem 1. Suppose A(ω) = ∑

k∈Z
ake

ikω and

B(ω) = ∑

k∈Z
bke

ikω are Fourier series. Then

(18) |A(ω)|2 + |A(ω+π)|2 = 2

if and only if

(19)
∑

k∈Z
akak−2n = δ0, n
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Figure 5. |H(ω)||H(ω)||H(ω)| for the length four
Daubechies scaling filter.

for n ∈ Z, and

(20) A(ω)B(ω)+A(ω+π)B(ω+π) = 0

if and only if

(21)
∑

k∈Z
akbk−2n = 0

for all n ∈ Z.

The proof of this theorem is straightforward.
Note that equations (19) and (21) guarantee
orthogonality of the matrix WN .

Suppose H(ω) satisfies (18). If we take

(22) G(ω) = −eiLωH(ω+π),
then G(ω) satisfies (18), and H(ω), G(ω) satisfy
(20). It is an easy exercise to show that the Fourier
coefficients of G(ω) are gk = (−1)kh1−k, k ∈ Z.

The condition H′(π) = 0 leads naturally to the

following generalization: If we want to produce
longer scaling filters h, each time we increase the
filter length by two, we require an additional deriv-
ative condition at π . For example, the Daubechies
scaling filter of length six is, in part, constructed

by requiring the conditions that H′(π) = 0 and
H′′(π) = 0. Each time an additional derivative
condition is imposed atπ , the modulus of the cor-
responding Fourier series becomes flatter at the

highest frequencyω = π . So the general derivative
conditions are

(23) H(m)(π) = 0, m = 0, . . . ,
L− 1

2
.

We also add the lowpass condition

(24) H(0) =
L
∑

k=0

hk =
√

2

so that our general system is given by (19), (23), and

(24). Daubechies proved that there are M = 2⌊
L+2

4 ⌋

real-valued scaling filters h = [h0, h1, . . . , hL]
T , L

is odd, that satisfy this system. Moreover, if we
construct G(ω) using (22), then G(0) = 0 and
|G(π)| = √2, as desired.

While this derivation of the system is easy

to understand, solving it numerically for large

filter lengths can be difficult. It should be noted

that Daubechies’s classical derivation of these

filters is centered around the construction of a

trigonometric polynomial that leads to the solution

of (18). Particular roots of this polynomial are then

used to find a Fourier seriesH(ω) that solves (23).

This process (see [5] or [9]) works well for filters

of long length, but the mathematics required to

understand it may be better suited for advanced

undergraduate or beginning graduate students.

Orthogonal Transforms in Applications

Now that we have the means for constructing or-

thogonal filters h, g of any odd length, it is natural

to consider the advantages and disadvantages of

their implementation in applications.

Let’s first consider filter length. Certainly, the

time to compute WNv is inversely proportional

to the length of h. On the other hand, it can be

shown [4] that the derivative conditions (23) lead

to filters g that annihilate (modulo wrapping rows)

data obtained by uniformly sampling a polynomial

of degree (L− 1)/2.

In image compression we typically transform

the image, then quantize the transform, and finally

encode the result. It can be shown that if the

transform is orthogonal, then the error incurred

when quantizing the transform coefficients is

exactly the same as the error between the original

image and the compressed image.

There are disadvantages to using orthogonal

transformations. In lossless image compression,

the quantization step is omitted. In this case, we

need to use a transformation that maps integers to

integers. It is possible to modify orthogonal trans-

forms (see [3]) and produce integer-to-integer map-

pings, but it is easier to modify the biorthogonal

transformations described in the next section.

Unfortunately, the wrapping rows that appear

in the WN constructed from Daubechies scaling

and wavelet filters pose a problem in many ap-

plications. In (12), there is one wrapping row in

each block of the transform. Figure 6 illustrates

the problem when the discrete Daubechies wavelet

transformation is applied to v ∈ R16, where vk = k,

k = 1, . . . ,16. The wrapping rows cause the first

two elements to be combined with the last two el-

ements of v to form the last weighted average and

last weighted difference. If the data are periodic,

this makesperfect sense,but in many signal/image

processing applications, the data are not periodic.

The wrapping row problem, caused by truncating

downsampled convolution products, is typical in

applied mathematics.
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Biorthogonal Scaling Filters

Fortunately, there is a way to deal with the wrap-

ping row problem, and that is to develop filters

that are symmetric.

An odd-length filter h is called symmetric ifhk =
h−k, while an even-length filter is called symmetric

if hk = h1−k. Daubechies [5] proved that the only

symmetric, finite length, orthogonal filter is the

Haar filter, and we have already discussed some

of its limitations. How can we produce symmetric

filters while preserving some of the desirable

properties of orthogonal filters? These desirable

properties are finite length (computational speed),

orthogonality (ease of inverse), and the ability to

produce a good approximation of the original data

with the scaling filter. Since the inverse need only

be computed once, it was Daubechies’s idea to

relinquish orthogonality and to construct instead

a discrete biorthogonal wavelet transformation.

The idea is to construct two sets of filters

instead of one. In other words, we construct two

wavelet transform matrices W̃N and WN so that

W̃−1
N = W T

N . In block form, we have

W̃NW
T
N =











H̃N/2

G̃N/2











·
[

HT
N/2 GTN/2

]

=




H̃N/2H
T
N/2 H̃N/2G

T
N/2

G̃N/2H
T
N/2 G̃N/2G

T
N/2





=
[

IN/2 0N/2

0N/2 IN/2

]

.

Let h̃ and h denote two filters and suppose H(ω),
H̃(ω) are the associated Fourier series. We require
both filters to be lowpass so we have H̃(0) =
H(0) = √

2 and H̃(π) = H(π) = 0. Instead of

orthogonality, we insist that the filters satisfy the

general biorthogonal condition

(25) H̃(ω)H(ω) + H̃(ω+π)H(ω+π) = 2.

Although the filters are no longer orthogonal, they

are close to orthogonal, and a proof very similar

to that of Theorem 1 shows that (25) holds if and

only if

(26)
∑

k∈Z
h̃khk−2n = δ0, n,

where n ∈ Z. Equation (26) ensures us, if we wrap
rows, that H̃N/2H

T
N/2 = IN/2. If we take

G̃(ω) = −eiωH(ω+π)(27)

G(ω) = −eiωH̃(ω+π),(28)

(a) v

(b) W16v

Figure 6. The discrete wavelet transform,
constructed using the Daubechies length four
scaling filter, applied to vvv.

then we can easily verify that G̃(0) = G(0) = 0,
G̃(π) = G(π) = √2, and

G̃(ω)G(ω) + G̃(ω+π)G(ω+π) = 2(29)

H̃(ω)G(ω) + H̃(ω+π)G(ω+π) = 0(30)

G̃(ω)H(ω) + G̃(ω+π)H(ω+π) = 0.(31)

Equation (29) implies that G̃N/2G
T
N/2 = IN/2, and

(30), (31), in conjunction with (20) from Theorem 1,

establishes H̃N/2G
T
N/2 = G̃N/2HT

N/2 = 0N/2. We can

also expand the Fourier series in (27) and (28) to

obtain the wavelet filter coefficients

(32) g̃k = (−1)kh1−k and gk = (−1)kh̃1−k,

where 1 − k ranges over the nonzero indices of

h̃, h. Thus, if we solve (25), we can find all the

filters we need to build W̃N and WN . Of course

(25) represents a quadratic system in terms of

the scaling filter coefficients, and such systems

are difficult to solve. Daubechies’s solution to

this problem was to simply pick the scaling filter

h̃ and then solve the linear system (25) for the

scaling filter h. Moreover, since we have given up

orthogonality in this new construction, we can
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insist that both scaling filters be symmetric. Let’s

look at an example.

Example 1. Suppose we want h̃ to be a symmetric,

length three, lowpass filter h̃ = [h̃−1, h̃0, h̃1]
T =

[h̃1, h̃0, h̃1]
T . We seek two numbers h̃0, h̃1 so that

H̃(0) = h̃1 + h̃0 + h̃1 =
√

2 and H̃(π) = −h̃1 + h̃0 −
h̃1 = 0. The filter1 h̃ we seek is

[h̃−1, h̃0, h̃1]
T =

√
2

4
[1,2,1]T .

To find a symmetric filter h, we must satisfy

the biorthogonality condition (25), together
with the lowpass constraints H(0) = √

2 and

H(π) = 0. It turns out that h must have an

odd length of 5,9,13, . . .. We choose symmetric

h = [h2, h1, h0, h1, h2]
T and use the lowpass condi-

tion H(π) = 0 in conjunction with (26) to obtain

the system

h0 − 2h1 + 2h2 = 0

h0 + h1 =
√

2

h1 + 2h2 = 0.

Solving this system gives h2 = −
√

2

8
, h1 =

√
2

4
, and

h0 = 3
√

2

4
. We can next use (32) to find the coeffi-

cients of the wavelet filters g and g̃. We have:

g̃ g

g̃−1 =
√

2

8

g̃0 =
√

2

4
g0 =

√
2

4

g̃1 = − 3
√

2

4
g1 = −

√
2

2

g̃2 =
√

2

4
g2 =

√
2

4

g̃3 =
√

2

8

Note that there is some symmetry in the highpass

filters: g̃k = g̃2−k and gk = g2−k. Here are exam-

ples of the biorthogonal transformation matrices

with N = 8. We form the matrices by placing the

0th element in the upper left corner of each block

with positive indexed elements placed consecu-

tively to the right and negative indexed elements

placed consecutively to the left with wrapping if

necessary.

W̃8 =



































√
2

2

√
2

4 0 0 0 0 0
√

2
4

0
√

2
4

√
2

2

√
2

4 0 0 0 0

0 0 0
√

2
4

√
2

2

√
2

4 0 0

0 0 0 0 0
√

2
4

√
2

2

√
2

4
√

2
4 − 3

√
2

4

√
2

4

√
2

8 0 0 0
√

2
8

0
√

2
8

√
2

4 − 3
√

2
4

√
2

4

√
2

8 0 0

0 0 0
√

2
8

√
2

4 − 3
√

2
4

√
2

4

√
2

8
√

2
4

√
2

8 0 0 0
√

2
8

√
2

4 − 3
√

2
4



































1Do you see how Pascal’s triangle can be used to generate

symmetric, lowpass filters?

Figure 7. The modified biorthogonal wavelet
transformation applied to the vector vvv from

Figure 6(a).

and

W8 =



































3
√

2
4

√
2

4 −
√

2
8 0 0 0 −

√
2

8

√
2

4

−
√

2
8

√
2

4
3
√

2
4

√
2

4 −
√

2
8 0 0 0

0 0 −
√

2
8

√
2

4
3
√

2
4

√
2

4 −
√

2
8 0

−
√

2
8 0 0 0 −

√
2

8

√
2

4
3
√

2
4

√
2

4
√

2
4 −

√
2

2

√
2

4 0 0 0 0 0

0 0
√

2
4 −

√
2

2

√
2

4 0 0 0

0 0 0 0
√

2
4 −

√
2

2

√
2

4 0
√

2
4 0 0 0 0 0

√
2

4 −
√

2
2



































It is straightforward to verify that W̃−1
8 = W T

8 .

Note that W̃8 andW8 still have wrapping rows, but
we can exploit the symmetry of the scaling filters
to construct a transformation that diminishes the

adverse effects of the wrapping rows. The idea
is quite simple, and we illustrate it now with an

example.

Example 2. Consider again the vector v ∈ R
16

where vk = k. We form the vector vp ∈ R30 where

vp = [v1, . . . , v16|v15, v14, . . . , v2]
T .

We next compute

[

ap

dp

]

= W̃30vp. The periodic na-

ture of vp means that the weighted averages and

differences formed by the wrapping rows use con-
secutive elements from v. For example, the first

element of ap is
√

2

4
v2 +

√
2

2
v1 +

√
2

4
v2 instead of the

first element of W̃16, which is
√

2

4
v16 +

√
2

2
v1+

√
2

4
v2.

The elements of the transform that do not involve

wrapping rows are the same as elements in W̃16v.
We keep the first eight elements of ap and dp and
concatenate them to form our transform. The re-

sult is plotted in Figure 7. Compare this result to
that plotted in Figure 6(b).

We can certainly construct biorthogonal filter

pairs of different lengths—we can either select h̃,
then set up and solve a linear system for h, or we
can use the closed formulas for H̃(ω) and H(ω)
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obtained by Daubechies in [6]. The biorthogonal

filter pair from the above example is particularly

interesting since it plays a significant role in the

JPEG2000 lossless image compression standard.

Next we present one more modification of the

transformation from Example 2 to understand

how the discrete biorthogonal wavelet transfor-

mation is used in the JPEG2000 image compression

standard.

Discrete Wavelet Transformations and
JPEG2000
In 1992 JPEG (Joint Photographic Image Experts

Group) became an international standard for com-

pressing digital images. In the late 1990s work

began to improve the JPEG compression standard,

and a new algorithm was developed. This algo-

rithm uses the biorthogonal wavelet transform

instead of the discrete cosine transform. Because

of patent issues, JPEG2000 is not yet supported

by popular web browsers, but it is likely that

once the patent issues are resolved, JPEG2000 will

replace JPEG as the most popular standard for

image compression.

The basic JPEG2000 algorithm works as follows.

Let us assume that we have a grayscale image A.

We first subtract 128 from each entry of A. We

apply as many iterations of the modified biorthog-

onal wavelet transformation (see Example 2) as

we wish (and as possible, depending on the di-

mensions of the image). The filter pair used in the

discrete biorthogonal wavelet transform depends

on whether we choose to perform lossy or loss-

less compression. In the case of the former, the

transformed image is quantized with many ele-

ments either reduced in magnitude or converted

to zero. Of course, once we quantize the trans-

formed image, we have no hope of recovering the

original image, but this loss of resolution is not

as important as the coder’s ability to compress

the quantized transform. In lossless compression,

no quantization is performed. In both cases, the

next step is to code the data. JPEG2000 uses an

arithmetic coding algorithm known as Embedded

Block Coding with Optimized Truncation (EBCOT)

to actually encode the (quantized) transformed

data. This last step is the actual compression step.

After transmission of the data, the original image

can be reconstructed by decoding, then applying

the inverse transformation as many times as iter-

ated. With lossless compression, we can recover

the image exactly.

One of the many advantages of JPEG2000 over

JPEG is its ability to allow the user to perform the

lossless compression. The biorthogonal filter pair

for this task is a modified version of the h̃ and h

from Example 1. The filter h is multiplied by
√

2/2

and h̃ is multiplied by
√

2. Moreover, the filters are

“reversed”—h is used to build W̃N . For example,
the modified transform for vectors of length 8 is:

W̃8 =





































3
4

1
4 − 1

8 0 0 0 − 1
8

1
4

− 1
8

1
4

3
4

1
4 − 1

8 0 0 0

0 0 − 1
8

1
4

3
4

1
4 − 1

8 0

− 1
8 0 0 0 − 1

8
1
4

3
4

1
4

− 1
2 1 − 1

2 0 0 0 0 0

0 0 − 1
2 1 − 1

2 0 0 0

0 0 0 0 − 1
2 1 − 1

2 0

− 1
2 0 0 0 0 0 − 1

2 1





































.

We use the ideas of Example 2 to further modify
the transformation so that it better handles output
produced by wrapping rows. This modification is
equivalent to computing W̃

p
8 to v where

(33) W̃
p
8 =





































3
4

1
2 − 1

4 0 0 0 0 0

− 1
8

1
4

3
4

1
4 − 1

8 0 0 0

0 0 − 1
8

1
4

3
4

1
4 − 1

8 0

0 0 0 0 − 1
8

1
4

5
8

1
4

− 1
2 1 − 1

2 0 0 0 0 0

0 0 − 1
2 1 − 1

2 0 0 0

0 0 0 0 − 1
2 1 − 1

2 0

0 0 0 0 0 0 −1 1





































.

This modified transform is still invertible, and
it now does a good job of handling edge effects.
However, the coding step of the JPEG2000 al-
gorithm works best if the transformation maps
integers to integers. How can we modify (33) for
general sizeN so that it maps integers to integers?
We could multiply the transformed data by 8, but
that increases the range of the output, which is
not desirable for coders. The algorithm used by
JPEG2000 for lossless compression is called lifting
and is due to Sweldens [11].

The Lifting Scheme
The idea behind lifting is quite simple. For a nice
tutorial, see [10], and more details are provided in
the books [12, 8].

To understand how lifting works, we apply (33)
to v ∈ Z8. The resulting product is W̃

p
8 v =

(34)

[

a

d

]

=

































− 1
8 v3+ 1

4 v2+ 3
4 v1+ 1

4 v2− 1
8 v3

− 1
8 v1+ 1

4 v2+ 3
4 v3+ 1

4 v4− 1
8 v5

− 1
8 v3+ 1

4 v4+ 3
4 v5+ 1

4 v6− 1
8 v7

− 1
8 v5+ 1

4 v6+ 3
4 v7+ 1

4 v8− 1
8 v7

− 1
2 v1+v2− 1

2 v3

− 1
2 v3+v4− 1

2 v5

− 1
2 v5+v6− 1

2 v7

− 1
2 v7+v8− 1

2 v7

































,

where we have rewritten a1, a4, and d4 so that they
display the same symmetry as the other elements
in the product. Note that the center value of the
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elements of a/(d) are built from the odd (even)
elements of v. If we form “even” and “odd” vectors

e = [e1, e2, e3, e4]
T = [v2, v4, v6, v8]

T

o = [o1, o2, o3, o4]
T = [v1, v3, v5, v7]

T ,

then

(35) dk = ek − 1

2
(ok+1 − ok),

where k = 1,2,3,4 and o5 := o4. The elements of
the top half of the transformation can then be
lifted from d:

(36) ak = ok +
1

4
(dk + dk−1),

where k = 1,2,3,4 and d0 := d1.
This method is computationally more efficient

than a fast matrix multiplication. Moreover, we
can easily modify this transformation so that it
maps integers to integers. Instead of computing
the elements of d using (35), we compute d∗,
whose elements are

(37) d∗k = ek −
⌊

1

2
(ok + ok+1)

⌋

and then compute a∗, whose elements are

(38) a∗k = ok +
⌊

1

4
(d∗k + d∗k−1)+

1

2

⌋

.

Adding 1/2 to the term above eliminates bias.
Certainly, the elements of a∗ and d∗ are integer-
valued and only slightly different from those given
by (35), (36), respectively. Moreover, the process
is completely invertible. Given d∗ and a∗, we can
certainly recover the values ok using (38), and then
given o and d∗, we can use (37) to recover e.

Concluding Remarks
In this article, we have provided a very brief intro-
duction to discrete wavelet transformations and
have shown how the topic effectively lends itself to
an intriguing undergraduate applied mathematics
course.

By introducing students to the discrete Haar
wavelet transformation, we are able to not only
construct a matrix representation of a tool used in
several applications but also provide students with
a concrete example of how convolution and Fourier
series can lead to a more general mathematical
model for the construction of more sophisticated
scaling and wavelet filters.

The Daubechies filters are better suited for
applications, but still suffer from the effects
of truncating infinite convolution products. This
problem leads to the development of biorthogonal
scaling filters. Still more modification is needed
to handle boundary effects, and students learn
that these modifications are not only tractable
but also lead to the lifting scheme. This compu-
tational method is not only faster than sparse
matrix multiplication but can also be modified
to produce the seemingly impossible invertible

transformation that involves rounding! This fi-
nal modification is an important tool used by the
JPEG2000 image compression standard to perform
lossless compression.

We have not discussed in this paper the classi-
cal approach to wavelet theory—the mathematics
there is quite elegant (the books [2, 14, 9] are aimed
at undergraduates). We believe, however, that an
introduction to the discrete wavelet transforma-
tion, with immediate immersion in applications,
is an effective way to introduce students to appli-
cations that are ubiquitous in today’s digital age,
to hone problem-solving skills, to promote and
improve scientific computing, and to motivate
concepts in upper-level undergraduate courses
such as real and complex analysis.
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