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Abstract. In this paper, we study general extremal problems for non-vanishing
functions in Bergman spaces. We show the existence and uniqueness of solu-
tions to a wide class of such problems. In addition, we prove certain regularity
results: the extremal functions in the problems considered must be in a Hardy
space, and in fact must be bounded. We conjecture what the exact form of the
extremal function is. Finally, we discuss the specific problem of minimizing the
norm of non-vanishing Bergman functions whose first two Taylor coefficients
are given.
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1. Introduction

For 0 < p <∞, let

Ap = {f analytic in D : (
∫

D

|f(z)|pdA(z))
1
p := ‖f‖Ap <∞}

denote the Bergman spaces of analytic functions in the unit disk D. Here dA stands
for normalized area measure 1

πdxdy in D, z = x + iy. For 1 ≤ p < ∞, Ap is a
Banach space with norm ‖ ‖Ap . Ap spaces extend the well-studied scale of Hardy
spaces

Hp := {f analytic in D : ( sup
0<r<1

∫ 2π

0

|f(reiθ)|p dθ
2π

)
1
p := ‖f‖Hp <∞}.
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For basic accounts of Hardy spaces, the reader should consult the well-known
monographs [Du, Ga, Ho, Ko, Pr]. In recent years, tremendous progress has been
achieved in the study of Bergman spaces following the footprints of the Hardy
spaces theory. This progress is recorded in two recent monographs [HKZ, DS] on
the subject.

In Hp spaces, the theory of general extremal problems has achieved a state of
finesse and elegance since the seminal works of S.Ya. Khavinson, and Rogosinski
and Shapiro (see [Kh1, RS]) introduced methods of functional analysis. A more
or less current account of the state of the theory is contained in the monograph
[Kh2]. However, the theory of extremal problems in Bergman spaces is still at a
very beginning. The main difficulty lies in the fact that the Hahn-Banach duality
that worked such magic for Hardy spaces faces tremendous technical difficulty in
the context of Bergman spaces because of the subtlety of the annihilator of the Ap

space (p ≥ 1) inside Lp(dA). [KS] contains the first more or less systematic study of
general linear extremal problems based on duality and powerful methods from the
theory of nonlinear degenerate elliptic PDEs. One has to acknowledge, however, the
pioneering work of V. Ryabych [Ry1, Ry2] in the 60s in which the first regularity
results for solutions of extremal problems were obtained. Vukotić’s survey ([Vu])
is a nice introduction to the basics of linear extremal problems in Bergman space.
In [KS], the authors considered the problem of finding, for 1 < p <∞,

sup{|
∫

D

w̄fdA| : ‖f‖Ap ≤ 1}, (1.1)

where w is a given rational function with poles outside of D. They obtained a
structural formula for the solution (which is easily seen to be unique) similar to
that of the Hardy space counterpart of problem (1.1). Note here that by more or
less standard functional analysis, problem (1.1) is equivalent to

inf{‖f‖Ap : f ∈ Ap, li(f) = ci, i = 1, . . . , n}, (1.2)

where the li ∈ (Ap)∗ are given bounded linear functionals on Ap, p > 1. Normally,
for li one takes point evaluations at fixed points of D, evaluations of derivatives,
etc. . . More details on the general relationship between problems (1.1) and (1.2)
can be found in [Kh2, pp. 69-74]. For a related discussion in the Bergman spaces
context, we refer to [KS, p. 960]. In this paper, we focus our study on problem
(1.2) for nonvanishing functions. The latter condition makes the problem highly
nonlinear and, accordingly, the duality approach does not work. Yet, in the Hardy
spaces context, in view of the parametric representation of functions via their
boundary values, one has the advantage of reducing the nonlinear problem for
nonvanishing functions to the linear problem for their logarithms. This allows one
to obtain the general structural formulas for the solutions to problems (1.1) or
(1.2) for nonvanishing functions in Hardy spaces as well. We refer the reader to
the corresponding sections in [Kh2] and the references cited there. Also, some of
the specific simpler problems for nonvanishing Hp functions have recently been
solved in [BK]. However, all the above-mentioned methods fail miserably in the
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context of Bergman spaces for the simple reason that there are no non-trivial
Bergman functions that, acting as multiplication operators on Bergman spaces,
are isometric.

Let us briefly discuss the contents of the paper. In Section 2, we study problem
(1.2) for nonvanishing Bergman functions: we show the existence and uniqueness
of the solutions to a wide class of such problems. Our main results are presented in
Sections 2 and 3 and concern the regularity of the solutions: we show that although
posed initially in Ap, the solution must belong to the Hardy space Hp, and hence,
as in the corresponding problems in Hardy spaces in [Kh2], must be a product of
an outer function and a singular inner function. Further, we show that that the
solutions to such problems are in fact bounded. Moreover, led by an analogy with
the Hardy space case, we conjecture that the extremal functions have the form

f∗(z) = exp(
k∑

j=1

λj
eiθj + z

eiθj − z
)

2n−2∏
j=1

(1 − ᾱjz)
2
p

n∏
j=1

(1 − β̄jz)−
4
p , (1.3)

where |αj | ≤ 1, |βj | < 1, λj < 0, n ≥ 1, k ≤ 2n− 2. In Section 4, we sketch how, if
one knew some additional regularity of the solutions, it would be possible to derive
the form (1.3) for the solutions. In the context of linear problems, i.e., with the
nonvanishing restriction removed, duality can be applied and then, incorporating
PDE machinery to establish the regularity of the solutions to the dual problem,
the structural formulas for the solutions of (1.1) and (1.2) are obtained (see [KS]).
We must stress again that due to the nonlinear nature of extremal problems for
nonvanishing functions, new techniques are needed to establish the regularity of
solutions up to the boundary beyond membership in an appropriate Hardy class.
In the last section, we discuss a specific case of Problem 1.2 with l1(f) = f(0)
and l2(f) = f ′(0). The study of this simple problem was initiated by D. Aharonov
and H.S. Shapiro in unpublished reports [AhSh1, AhSh2], and B. Korenblum has
drawn attention to this question on numerous occasions.

2. Existence and regularity of solutions

Consider the following general problem.

Problem 2.1. Given n continuous linearly independent linear functionals l1, l2, . . . ,
ln on Ap and given n points c1, c2, . . . , cn in C − {0}, find

λ = inf{‖f‖Ap : f is zero-free, li(f) = ci, 1 ≤ i ≤ n}.
The set of zero-free functions satisfying the above interpolation conditions

can in general be empty, so we will assume in what follows that this set is non
void. Concerning existence of extremals, we have:

Theorem 2.2. The infimum in Problem 2.1 is attained.
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Proof. (The following argument is well known and is included for completeness.)
Pick a sequence fk of zero-free functions in Ap such that li(fk) = ci for every
1 ≤ i ≤ n and every k = 1, 2, . . . , and such that ‖fk‖Ap → λ as k → ∞. Since
these norms are bounded, there exists a subsequence {fkj} and an analytic function
f such that fkj → f as j → ∞. By Hurwitz’ theorem, f is zero-free. Moreover,
li(f) = ci for every 1 ≤ i ≤ n. By Fatou’s lemma,

(
∫

D

|f |pdA)
1
p ≤ λ,

but by minimality of λ, we must actually have equality. Therefore f is extremal
for Problem 2.1. �

Let us now consider the special case of point evaluation. More specifically,
let β1, . . . , βn ∈ D be distinct points and let li(f) = f(βi), for 1 ≤ i ≤ n. We will
assume that none of the ci is zero.

The following result shows that we need only solve the extremal problem in
A2 in order to get a solution in every Ap space (p > 0.)

Theorem 2.3. If g is minimal for the problem

inf{‖g‖A2 : g is zero-free, li(g) = bi, 1 ≤ i ≤ n},
where the bi are elements of D, then g

2
p is minimal for the problem

(∗) inf{‖f‖Ap : f is zero-free , li(f) = ci, 1 ≤ i ≤ n},
where ci = li(g

2
p ).

Proof. The function g
2
p is zero-free and∫

D

(|g(z)| 2p )pdA(z) =
∫
D

|g(z)|2dA(z) <∞,

so g
2
p is in Ap. Moreover by definition, g

2
p satisfies the interpolation conditions

ci = li(g
2
p ).

Now suppose that g
2
p is not minimal for the problem (*). Then there exists

h ∈ Ap zero-free such that ci = li(h) and∫
D

|h(z)|pdA(z) <
∫
D

|g(z)|2dA(z).

The function h
p
2 is a zero-free A2 function such that

‖h p
2 ‖2 < ‖g‖2.

Moreover
li(h

p
2 ) = h

p
2 (βi) = c

p
2
i = (g

2
p (βi))

p
2 = g(βi) = bi.

This contradicts the minimality of g for the A2 problem. �
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Notice that by the same argument, the converse also holds; in other words,
if we can solve the extremal problem in Ap for some p > 0, then we can also solve
the extremal problem in A2. Therefore for the remainder of the paper, we will
consider only the case p = 2. Notice that if we consider Problem (1.2) without the
restriction that f must be zero-free, the solution is very simple and well known.
Considering for simplicity the case of distinct βj , the unique solution is the unique
linear combination of the reproducing kernels k(., βj) satisfying the interpolating
conditions, where

k(z, w) := 1/(1 − w̄z)2.

Since our functions are zero-free, we will rewrite a function f as f(z) =
exp(ϕ(z)), and solve the problem (relabelling the ci)

λ = inf{‖ exp(ϕ(z))‖A2 : ϕ(βi) = ci, 1 ≤ i ≤ n}. (2.1)

Theorem 2.4. The extremal solution to Problem (2.1) is unique.

Proof. Suppose ϕ1 and ϕ2 are two extremal solutions to (2.1), that is

λ = ‖eϕ1‖A2 = ‖eϕ2‖A2

and
ϕ1(βi) = ϕ2(βi) = ci

for every 1 ≤ i ≤ n. Consider

ϕ(z) =
ϕ1(z) + ϕ2(z)

2
.

This new function satisfies ϕ(βi) = ci for every 1 ≤ i ≤ n, and therefore

λ2 ≤
∫

D

|eϕ(z)|2dA(z)

=
∫

D

|eϕ1(z)||eϕ2(z)|dA(z)

≤ ‖eϕ1‖A2‖eϕ2‖A2 (by the Cauchy-Schwarz inequality)
= λ2.

This implies that

|eϕ1(z)| = C|eϕ2(z)|
for some constant C. Since the function eϕ1/eϕ2 has constant modulus, it is a
constant, which must equal 1 because of the normalization. The extremal solution
to (2.1) is therefore unique. �

Remark. We can generalize this theorem to some other linear functionals li. For
instance, one may wish to consider linear functionals lij , i = 1, . . . , n, j = 0, . . . , ki,
that give the jth Taylor coefficients of f at βi.
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The next three lemmas are the technical tools needed to address the issue
of the regularity of the extremal function: we want to show that the extremal
function is actually a Hardy space function.

For integers m ≥ n, consider the class Pm of polynomials p of degree at most
m such that p(βi) = ci for every 1 ≤ i ≤ n. Let

λm = inf{‖ep(z)‖A2 : p ∈ Pm}. (2.2)

Lemma 2.5. lim
m→∞ λm = λ.

Proof. Notice that λm is a decreasing sequence of positive numbers bounded below
by λ, so

lim
m→∞λm ≥ λ.

On the other hand, let ϕ∗ be the extremal function for (2.1). Write

ϕ∗(z) = L(z) + h(z)g(z),

where L is the Lagrange polynomial taking value ci at βi, namely

L(z) =
n∑

i=1

ci

∏n
k=1,k �=i(z − βk)∏n
k=1,k �=i(βi − βk)

,

h(z) =
∏n

i=1(z − βi), and g is analytic in D. For each 0 < r < 1, define

ϕr(z) := ϕ∗(rz).

Let ε > 0. Notice that there exists δ > 0 such that if c̃i are complex numbers
satisfying |ci − c̃i| < δ for i = 1, . . . , n, then |L(z) − L̃(z)| < ε (for every z ∈ D),
where L̃ is the Lagrange polynomial with values c̃i at βi. We now pick r close
enough to 1 so that

‖eϕ∗ − eϕr‖A2 < ε

and
|ϕr(βi) − ϕ∗(βi)| < δ

2
for i = 1, . . . , n.

Define pm,r to be the mth partial sum of the Taylor series of ϕr. Given any
integer N ≥ n, pick m ≥ N such that

‖epm,r(z) − eϕr(z)‖A2 < ε

and
|pm,r(βi) − ϕr(βi)| < δ

2
for i = 1, . . . , n.

Let c̃i = pm,r(βi) for i = 1, . . . , n and let L̃ be the Lagrange polynomial taking
values c̃i at βi. Then we can write

pm,r(z) = L̃(z) + h(z)qm−n,r(z),

where qm−n,r is a polynomial of degree at most m−n. Notice that since |pm,r(βi)−
ϕ(βi)| < δ (for every i = 1, . . . , n),

|L(z) − L̃(z)| < ε for every z ∈ D.



Extremal Problems for Nonvanishing Functions 65

Define
pm(z) = L(z) + h(z)qm−n,r(z).

Then pm ∈ Pm, and

|epm(z) − epm,r(z)|2 ≤ |epm,r(z)|2(e|pm,r(z)−pm(z)| − 1)2

= |epm,r(z)|2(e|L̃(z)−L(z)| − 1)2

≤ |epm,r(z)|2(eε − 1)2

Therefore

‖epm − epm,r‖A2 ≤ ‖epm,r‖A2(eε − 1)
≤ C(eε − 1),

where C is a constant depending only on ‖eϕ∗‖A2 . Therefore

‖epm(z) − eϕ∗(z)‖A2 ≤ 2ε+ C(eε − 1) = Cε,

which implies
λm ≤ ‖epm(z)‖A2 ≤ Cε + λ

for arbitrarily large m, where Cε → 0 as ε→ 0. Therefore

lim
m→∞λm ≤ λ.

Since we already have the reverse inequality, we can conclude that

lim
m→∞λm = λ. �

Lemma 2.6. The extremal polynomial p∗m in (2.2) exists, and for every polynomial
ψm−n of degree at most m− n,∫

D

|ep∗
m(z)|2(z − β1) . . . (z − βn)ψm−n(z)dA(z) = 0.

Proof. To prove the existence of the extremal polynomial p∗m, consider the mini-
mizing sequence pk

m in (2.2). Without loss of generality, we can assume that the
functions epk

m converge on compact subsets, and hence pk
m converge pointwise in

D to a polynomial p∗m ∈ Pm. As above, applying Fatou’s lemma, we see that p∗m
is in fact the extremal.

Define

F (ε) = ‖ exp(p∗m(z) + ε

n∏
i=1

(z − βi)ψm−n(z))‖2
A2

where ψm−n is any polynomial of degree at most m−n. Then since p∗m is extremal,
F ′(0) = 0.

F (ε) =
∫

D

| exp(p∗m(z) + ε

n∏
i=1

(z − βi)ψm−n(z))|2dA(z)

=
∫

D

| exp(p∗m(z))|2 exp(2εRe(
n∏

i=1

(z − βi)ψm−n(z))dA(z)
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Therefore

F ′(0) =
∫

D

| exp(p∗m(z))|22Re(
n∏

i=1

(z − βi)ψm−n(z))dA(z) = 0.

Replacing ψm−n by iψm−n gives
∫

D

| exp(p∗m(z))|22Re(
n∏

i=1

(z − βi)iψm−n(z))dA(z) = 0,

and therefore ∫
D

| exp(p∗m(z))|2
n∏

i=1

(z − βi)ψm−n(z)dA(z) = 0

for every polynomial ψm−n of degree at most m− n. �

Lemma 2.7. For each m ≥ n, ep∗
m ∈ H2, and these H2 norms are bounded.

Proof. Write
p∗m(z) = L(z) + h(z)qm−n(z),

where L(z) is the Lagrange polynomial taking value ci at βi (for i = 1, . . . , n),
h(z) =

∏n
i=1(z − βi), and qm−n is a polynomial of degree at most m− n. We then

have∫
T

|ep∗
m(eiθ))|2dθ = i

∫
T

|ep∗
m(z)|2zdz̄

= 2
∫

D

∂

∂z
(|ep∗

m(z)|2z)dA(z) (by Green’s formula)

=
∫

D

|ep∗
m(z)|2(p∗′

m(z)z + 1)dA(z).

We would like to show that this integral is bounded by C‖ep∗
m(z)‖2

A2 , where C is
a constant independent of m. First notice that

zp∗
′

m(z) = zL′(z) + zh′(z)qm−n(z) + zh(z)q′m−n(z).

Since zq′m−n(z) is a polynomial of degree at most m− n, Lemma 2.6 allows us to
conclude that ∫

D

|ep∗
m(z)|2zh(z)q′m−n(z)dA(z) = 0.

On the other hand, zL′(z) is bounded and independent of m, and therefore

|
∫

D

|ep∗
m(z)|2zL′(z)dA(z)| ≤ C1‖ep∗

m(z)‖2
A2 ,

where C1 is a constant independent of m. Therefore the crucial term is that in-
volving zh′(z)qm−n(z). Write

qm−n(z) = qm−n(βk) + (z − βk)qm−n−1(z),
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where qm−n−1 is a polynomial of degree at most m− n− 1. Then

zh′(z)qm−n(z) = z{
n∑

k=1

[
n∏

i=1,i�=k

(z − βi)]}{qm−n(βk) + (z − βk)qm−n−1(z)}

=
n∑

k=1

{z
n∏

i=1,i�=k

(z − βi)}qm−n(βk) +
n∑

k=1

{
n∏

i=1

(z − βi)}zqm−n−1(z).

Since zqm−n−1(z) is a polynomial of degree at most m − n, by Lemma 2.6, the
contribution of the second big sum above, when integrated against |ep∗

m(z)|2, is zero.
On the other hand, it is not hard to see that the polynomials qm−n are (uniformly)
bounded on the set {βk : k = 1, . . . , n}, and therefore their contribution is a
bounded one, that is, there exists a constant C2 such that

∫
D

|ep∗
m(z)|2zh′(z)qm−n(z)dA(z) ≤ C2‖ep∗

m(z)‖2
A2 .

We have therefore shown that there exist constants C and M , independent of m,
such that ∫

T

|ep∗
m(eiθ)|2dθ ≤ C‖ep∗

m(z)‖2
A = Cλm ≤ CM.

Thus the functions ep∗
m have uniformly bounded H2 norms. �

Theorem 2.8. eϕ∗ ∈ H2.

Proof. By an argument similar to that of Theorem 2.2 and by uniqueness of the
extremal function for (2.1), there exists a subsequence {p∗mk

} of {pm} such that

ep∗
mk → eϕ∗

pointwise as k → ∞. For each fixed radius r, 0 < r < 1, by Fatou’s lemma,
∫

T

| exp(ϕ∗(reiθ))|2dθ ≤ lim inf
k→∞

∫
T

| exp(p∗mk
(reiθ))|2dθ.

By Lemma 2.7, the right-hand side is bounded for all 0 < r < 1, and therefore
eϕ∗ ∈ H2. �

The following corollary follows from Theorems 2.8 and 2.3.

Corollary 2.9. Let 0 < p <∞, and let eϕ∗
be the extremal function that minimizes

the norm

λ = inf{‖ exp(ϕ(z))‖Ap : ϕ(βi) = ci, 1 ≤ i ≤ n}.
Then eϕ∗

is in Hp.
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3. Another approach to regularity

In the following, we present a very different approach to showing the a priori regu-
larity of the extremal function. It was developed by D. Aharonov and H.S. Shapiro
in 1972 and 1978 in two unpublished preprints ([AhSh1, AhSh2]) in connection
with their study of the minimal area problem for univalent and locally univalent
functions. See also [ASS1, ASS2].

Given n points β1, . . . , βn of D, and complex numbers c1, . . . , cn recall that
L denotes the unique (Lagrange interpolating) polynomial of degree at most n− 1
satisfying

L(βj) = cj , j = 1, 2, . . . , n. (3.1)
As above, the polynomial h is defined by

h(z) := (z − β1) . . . (z − βn).

We are considering, as before, Problem (1.2) when the functionals li are point
evaluations at βi, in A2.

Recall that in order to get a nonvacuous problem, we assume that none of
the cj is zero. For a holomorphic function f in D, let L(f) denote the unique
polynomial of degree at most n− 1 satisfying (3.1), with cj := f(βj). Then, there
is a unique function g analytic in D such that

f = hg + L(f).

Of course, L(f) is bounded on D by Cmax |f(βj)|, where C is a constant depending
on the {βj} and the {cj}, but not on f .

Suppose now for each s in the interval (0, s0), as denotes a univalent function
in D satisfying

as(0) = 0 and (3.2)
|as(z)| < 1 for z ∈ D. (3.3)

(Thus, by Schwarz’ lemma,

|as(z)| ≤ |z| for z ∈ D.)

Let Gs denote the image of D under the map z → as(z).
Let now f be an extremal function for Problem (1.2), that is, it is a zero-free

function in A2 satisfying the interpolating conditions

f(βj) = cj , j = 1, . . . , n, (3.4)

and having the least norm among such functions. Then, denoting

gs(z) := f(as(z))a′s(z), (3.5)

we observe that the function fs defined by

fs(z) := gs(z)L(f/gs)(z) (3.6)

is in A2 and satisfies the interpolating conditions, since

fs(βj) = gs(βj)[f(βj)/gs(βj)] = f(βj).
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Moreover, gs is certainly zero-free, and hence so is fs if we can verify that the
polynomial L(f/gs) has no zeros in D.

Now, we shall impose some further restrictions on the maps as. We assume
that

|as(z) − z| ≤ B(z)c(s) and (3.7)
|a′s(z) − 1| ≤ B(z)c(s) (3.8)

where B is some positive continuous function on D, and c is a continuous function
on (0, s0] such that

c(s) → 0 as s→ 0. (3.9)
With these assumptions, as(z) → z and a′s(z) → 1 for each z in D, as s→ 0. Thus,
f(βj)/gs(βj) → 1 as s→ 0, for each j. Thus, the polynomials

Ls := L(f/gs)

of degree at most n− 1 tend to 1 on the set {β1, . . . , βn} as s→ 0, and hence they
tend uniformly to 1 on D. It follows that for s sufficiently near 0, Ls has no zeros
in D, and consequently fs is zero-free.

Hence, for sufficiently small s, say s < s1, fs is a “competing function” in
the extremal problem, and we have:

‖f‖A2 ≤ ‖fs‖A2 . (3.10)

Note that L(f/gs) differs from 1, uniformly for all z in D, by a constant times the
maximum of the numbers

{|(f(βj)/gs(βj)) − 1|, j = 1, 2, . . . , n}. (3.11)

Now,
f(z)/gs(z) − 1 = (f(z) − gs(z))/gs(z)

and since
|gs(z)| = |f(as(z)||a′s(z)| → |f(z)| as s→ 0,

by virtue of (3.7), (3.8), and (3.9) the numbers |gs(βj)| remain greater than some
positive constant as s → 0. Consequently, the numbers (3.11) are, for small s,
bounded by a constant times the maximum of the numbers

{|f(βj) − gs(βj)|, j = 1, 2, . . . , n}. (3.12)

But,

|f(z) − gs(z)| = |f(z) − f(as(z))a′s(z)|
≤ |f(z) − f(as(z))| + |f(as(z))||1 − a′s(z)|

Using the estimates (3.7), (3.8) we find that the numbers (3.12) are bounded by a
constant times c(s), and therefore

L(f/gs) = 1 + O(c(s)),

uniformly for z in D, as s→ 0. Hence, from (3.10) and (3.6),

‖f‖A2 ≤ ‖gs‖A2(1 +Mc(s))
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for some constant M , thus∫
D

|f(z)|2dA ≤
∫

D

|fs(z)|2dA+Nc(s)

for some new constant N . Since∫
D

|fs(z)|2dA =
∫

D

|f(as(z)|2|a′s(z)|2dA

=
∫

Gs

|f(z′)|2dA(z′) (changing variables by z′ = as(z))

and combining the two integrals yields:
(∗) Under the assumptions made thus far, the area integral of |f |2 over the do-

main Ds complementary to Gs = as(D) in D does not exceed Nc(s), where
N is a constant and c(s) is as in (3.7) and (3.8).

To see the usefulness of (∗), let us first consider an almost trivial choice of as,
namely

as(z) = (1 − s)z and a′s(z) = 1 − s.

Then, (3.7) and (3.8) hold with c(s) = s. Here Gs is the disk {|z| < 1− s} , so (∗)
asserts (denoting t := 1 − s): the integral of |f |2 over the annulus {t < |z| < 1},
for all t sufficiently close to 1, is bounded by a constant times 1− t. Consequently,
the mean value of |f |2 over these annuli remains bounded. This, however, easily
implies that f is in the Hardy class H2 of the disk! So, we have given another
proof of Theorem 2.8: extremals for the zero-free A2 problem (1.2) always belong
to H2.

We can extract a bit more, namely that extremals are bounded in D, with a
more recondite choice of a(s).

Let w denote a point of the unit circle T, and s a small positive number. Let
Gs,w denote the crescent bounded by T and a circle of radius s internally tangent to
T at w. (This circle is thus centered at (1−s)w.) Let as,w be the unique conformal
map of D onto Gs,w mapping 0 to 0 and the boundary point w to (1 − 2s)w, and
bs,w the z-derivative of as,w. We are going to show

Lemma 3.1. With as,w and bs,w in place of as, a′s respectively, (3.7) and (3.8) hold,
with c(s) = s2, uniformly with respect to w.

Assuming this for the moment, let us show how the boundedness of extremals
follows. Applying (*), we see that if f is extremal, the area integral of |f |2 over
the disk centered at (1− s)w of radius s does not exceed a constant (independent
of w and s) times the area of this disk. Since |f((1 − s)w)|2 does not exceed
the areal mean value of |f |2 over this disk, we conclude |f((1 − s)w)| is bounded
uniformly for all w in T and sufficiently small s, i.e., |f | is bounded in some annulus
{1 − s0 < |z| < 1}, and hence in D. We therefore have the following:

Theorem 3.2. The extremal function f∗ for Problem 2.1 is in H∞.

It only remains to prove Lemma 3.1.



Extremal Problems for Nonvanishing Functions 71

Proof. First note that the arguments based on (3.7 and 3.8) leading to (*) only
rely on the boundedness of the function B on compact subsets of D, and more
precisely on a compact subset containing all interpolation points βj , j = 1, . . . , n.
Since clearly (3.8) follows (with a different choice of B(.)) from (3.7), we have only
to verify (3.7). Also, by symmetry, it is enough to treat the case w = 1. We do so,
and for simplicity denote as,1, Gs,1 by as, Gs respectively. Thus, as maps D onto
the domain bounded by T and the circle of radius s centered at 1 − s. Moreover
as(0) = 0, and as(1) = 1 − 2s. Thus, we have a Taylor expansion

as(z) = c1,sz + c2,sz
2 + · · ·

convergent for |z| < 1. Moreover, it is easy to see from the symmetry of Gs that
all the coefficients cj,s are real.

Under the map Z = 1/(1−z), Gs is transformed to a vertical strip S in the Z
plane bounded by the lines {ReZ = 1/2} and {ReZ = 1/2s}. Thus, the function

hs := 1/(1 − as)

maps D onto S and carries 0 into 1, and the boundary point 1 to ∞. Hence
us(eit) := Re(hs(eit)) satisfies

us(eit) = 1/2 for |t| > t0, and
= 1/2s for |t| < t0,

where t0, 0 < t0 < π is determined from

1 =
1
2π

∫
T

us(eitdt =
1
2

+
1 − s

2πs
t0

hence
t0 = (s/(1 − s))π. (3.13)

Now, we have a Taylor expansion

hs(z) = 1 + b1,sz + b2,sz
2 + · · · (3.14)

where the bj,s are real, and so determined from

us(eit = 1 + b1,s cos t+ b2,s cos 2t+ · · · ,
i.e.,

bn,s =
2
π

∫ π

0

us(eit) cos(nt)dt

hence

bn,s = sinnt0/nt0 n = 1, 2, . . . (3.15)

where t0 is given by (3.13).
We are now prepared to prove Lemma 3.1, i.e.,

|as(z) − z| ≤ B(z)s2. (3.16)

We have

hs(z) − 1
1 − z

=
1

1 − as(z)
− 1

1 − z
=

as(z) − z

(1 − z)(1 − as(z))
,
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so

|as(z) − z| ≤ 4|hs(z) − 1
1 − z

| ≤ 4
∞∑

n=1

|bn,s − 1||z|n. (3.17)

But, from (3.15)

|bn,s − 1| = | sinnt0
nt0

− 1|.
Since the function

(sinx)/x− 1
x2

is bounded for x real, we have for some constant N :

| sinnt0
nt0

− 1| ≤ N(nt0)2 ≤ N ′n2s2

for small s, in view of (3.13), whereN ′ is some new constant. Thus, finally, inserting
this last estimate into (3.17),

|as(z) − z| ≤ N ′′s2B(z),

where

B(z) :=
∞∑

n=1

n2|z|n,

which is certainly bounded on compact subsets of D, and the proof is finished. �
Remark. This type of variation can be used to give another proof of the regularity
and form of extremal functions in the non-vanishingHp case, which were originally
established in [Kh1, Kh2]. In what follows, we shall only discuss the case p = 2,
since the case of other p follows at once via an analogue of Theorem 2.3 in the Hp

setting.
For the sake of brevity, we only consider the following problem. Given complex

constants c0, c1, . . . , cm with c0 not zero (w.l.o.g. we could take c0 = 1), let A be
the subset of H2 consisting of “admissible functions” f , i.e., those functions zero-
free in D whose first m+1 Taylor coefficients are the cj . We consider the extremal
problem , to minimize ‖f‖2 := ‖f‖H2 in the class A. The following argument is
again an adaptation of a variational argument used by Aharonov and Shapiro in
([AhSh1, AhSh2]) for a different problem.

Proposition 3.3. Every extremal is in the Dirichlet space, that is, satisfies∫
D

|f ′(z)|2dA <∞.

Proof. Let f be extremal, and 0 < t < 1. Then,

f(z) = tf(tz)[f(z)/tf(tz)] = tf(tz)[S(z; t) +R(z; t)] (3.18)

where S denotes the partial sum of order m of the Taylor expansion of f(z)/tf(tz)
=: E(z; t) and R denotes the remainder E − S. Now,

|f(z) − f(tz)| ≤ C(1 − t),



Extremal Problems for Nonvanishing Functions 73

uniformly for |z| ≤ 1/2, where C is a constant depending on f , and this implies
easily

|1 − E(z; t)| ≤ C(1 − t)

for those z, and some (different) constant C. From this it follows easily that

S(z; t) = 1 +O(1 − t), uniformly for z ∈ D. (3.19)

Moreover, from (3.18) we see that tf(tz)S(z; t) has the same Taylor coefficients as
f , through terms of order m. Also, (3.19) shows that S does not vanish in D for t
near 1. We conclude that, for t sufficiently close to 1, tf(tz)S(z; t) is admissible,
and consequently its norm is greater than or equal to that of f , so we have

∫
T

|f(eis)|2ds ≤ (
∫

T

|tf(teis)|2ds)(1 + O(1 − t)),

or, in terms of the Taylor coefficients an of f ,
∑

|an|2 ≤ [
∑

|an|2t2n+2](1 +O(1 − t))

so ∑
(1 − t2n+2)/(1 − t)|an|2

remains bounded as t→ 1, which implies f has finite Dirichlet integral. �

Corollary 3.4. The extremal must be a polynomial of degree at most m times a
singular function whose representing measure can only have atoms located at the
zeros on T of this polynomial.

Proof. As usual, for every h ∈ H∞, (1 + wzm+1h)f (where f is extremal, and w
a complex number) is admissible for small |w|. Hence, as in the proof of Lemma
2.6, we obtain that f is orthogonal (in H2!) to zm+1hf . If f = IF , where I is
a singular inner function and F is outer, since |I| = 1 a.e. on T, it follows that
F is orthogonal to zm+1FH∞. Now, F is cyclic, so FH∞ is dense in H2, i.e.,
F is orthogonal to zm+1H2. Hence, F is a polynomial of degree at most m. For
the product FI to have a finite Dirichlet norm, the singular measure for I must
be supported on a subset of the zero set of F on T as claimed. Indeed, for any
singular inner function I and any point w ∈ T where the singular measure for I
has infinite Radon-Nikodym derivative with respect to Lebesgue measure,

∫
D∩{|z−w|<c}

|I ′|2dA = ∞,

because the closure of the image under I of any such neighborhood of w is the
whole unit disk (cf. [CL, Theorem 5.4]). �
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4. A discussion of the conjectured form of extremal functions

In this section we provide certain evidence in support of our overall conjecture and
draw out possible lines of attack that would hopefully lead to a rigorous proof in
the future. Recall that the extremal function f∗ in the problem (2.1):

λ = inf{‖ exp(ϕ(z))‖A2 : ϕ(βi) = ci, 1 ≤ i ≤ n}
is conjectured to have the form (1.3):

f∗(z) = C

∏2n−2
j=1 (1 − ᾱjz)

2
p exp(

∑k
j=1 λj

eiθj +z

eiθj −z
)

∏n
j=1(1 − β̄jz)

4
p

,

where C is a constant, |αj | ≤ 1, j = 1, . . . , 2n− 2, |βj | < 1, j = 1, . . . , n, λj ≤ 0,
j = 1, . . . k, k ≤ 2n−2. As in the previous sections, we shall focus the discussion on
the case p = 2, since the Ap extremals are simply the 2/pth powers of those in A2.

First, let us observe that if the solution to the problem for p = 2 in the whole
space A2, i.e.,

λ = inf{‖f(z)‖A2 : f(βj) = exp(cj), 1 ≤ j ≤ n} (4.1)

happens to be non-vanishing in D, then it solves Problem (2.1.) The solution to
Problem (4.1) is well known and is equal to a linear combination of the reproducing
Bergman kernels at the interpolation points. That is,

f∗(z) =
n∑

j=1

aj

(1 − β̄jz)2
, (4.2)

where the aj are constants, which does have the form (1.3) with singular inner
factors being trivial.

Recall that a closed subset K of the unit circle T is called a Carleson set if∫
T

log ρK(eiθ)dθ > −∞,

where ρK(z) = dist (z,K) (cf., e.g., [DS, p. 250].)
Now, if we could squeeze additional regularity out of the extremal function

f∗ in (2.1),the following argument would allow us to establish most of (1.3) right
away. Namely

Theorem 4.1. Assume that the support of the singular measure in the inner factor
of the extremal function f∗ in (2.1) is a Carleson set. Then the outer part of f∗

is as claimed in (1.3).

Remark. The regularity assumption for the singular factor of f∗ is not unreason-
able. In fact, some a priori regularity of extremals was the starting point in ([KS])
for the investigation of linear extremal problems in Ap, i.e., Problem 2.1 but with-
out the non-vanishing restriction. There, the authors have been able to achieve
the a priori regularity by considering a dual variational problem whose solution
satisfied a nonlinear degenerate elliptic equation. Then, the a priori regularity re-
sults for solutions of such equations (although excruciatingly difficult) yielded the
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desired Lipschitz regularity of the extremal functions. Surprisingly, as we show at
the end of the paper, even in the simplest examples of problems for non-vanishing
functions in A2, if the extremals have the form (1.3), they fail to be even contin-
uous in the closed disk. This may be the first example of how some extremals in
Ap and Hp differ qualitatively. Of course, the extremal functions for Problem 2.1
in the Hp context are all Lipschitz continuous (cf. Corollary 3.4). Unfortunately,
in the context of highly nonlinear problems for non-vanishing functions (since the
latter do not form a convex set) the direct duality approach fails at once. (Below,
however, we will indicate another line of reasoning which may allow one to save
at least some ideas from the duality approach.)

Proof. From the results of the previous sections, it follows that

f∗ = FS, (4.3)

where F is outer and S is a singular inner function whose associated measure
µ ≤ 0, µ ⊥ dθ is concentrated on the Carleson set K. Note that

S′(z) = S(z)
1
2π

∫ 2π

0

2dµ(θ)
(eiθ − z)2

,

where

S(z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ).

So
|S′(z)| = O(ρ−2

K (z)), (4.4)
where ρK is the distance from z to the set K. By a theorem of Carleson (see
[DS], p. 250), there exists an outer function H ∈ C2(D̄) such that K ⊂ {ζ ∈ T :
H(j)(ζ) = 0, j = 0, 1, 2}, and hence

H(j)(z) = O(ρK(z)2−j), j = 0, 1, 2 (4.5)

when z → K. (4.4) and (4.5) yield then that

(HS)′ = H ′S +HS′ = hS, (4.6)

where h ∈ H∞(D). Recall from our discussions in Sections 2 and 3 that the
extremal function f∗ must satisfy the following orthogonality condition:∫

D

|f∗|2
n∏

j=1

(z − βj)gdA = 0 (OC)

for all, say, bounded analytic functions g. Rewriting (OC) as

0 =
∫

D

F̄ S̄FS

n∏
j=1

(z − βj)gdA (4.7)

and noting that F is cyclic in A2, so that we can find a sequence of polynomials pn

such that Fpn → 1 in A2 (F is “weakly invertible” in A2 in an older terminology),
we conclude from (4.7) that FS = f∗ is orthogonal to all functions in the invariant
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subspace [S] of A2 generated by S that vanish at the points β1, β2, . . . , βn. In
particular, by (4.6), f∗ is orthogonal to all functions ∂

∂z (H
∏n

j=1(z − βj)2Sg) for
all polynomials g, i.e.,

0 =
∫

D

f̄∗ ∂
∂z

(H
n∏

j=1

(z − βj)2Sg)dA. (4.8)

Applying Green’s formula to (4.8), we arrive at

0 =
∫

T

f̄∗H
n∏

j=1

(z − βj)2Sgdz̄ =
∫

T

F̄H

n∏
j=1

(z − βj)2g
dz

z2
, (4.9)

since |S| = 1 on T. Finally, since H is outer and hence cyclic in H2, there exists a
sequence of polynomials qn such that Hqn → 1 in H2. Also there exists a sequence
of polynomials pn such that pn → F in H2, so replacing g by pnqng, we obtain

0 =
∫

T

|F |2
n∏

j=1

(z − βj)2g
dz

z2
(4.10)

for all polynomials g. F.&M. Riesz’ theorem (cf. [Du, Ga, Ho, Ko]) now implies
that

|F |2 =
z2h∏n

j=1(z − βj)2
a.e. on T (4.11)

for some h ∈ H1(D). The rest of the argument is standard (see for example [Du],
Chapter 8.) Since

r(z) :=
z2h(z)∏n

j=1(z − βj)2
≥ 0

on T, it extends as a rational function to all of Ĉ and has the form

r(z) = C
z2

∏2n−2
j=1 (z − αj)(1 − ᾱjz)∏n

j=1(z − βj)2(1 − β̄jz)2
(4.12)

where |αj | ≤ 1, j = 1, . . . , 2n − 2, are the zeros of r in D̄ (zeros on T have even
multiplicity) and C > 0 is a constant. Thus, remembering that F is an outer
function and so

logF (z) =
1
4π

∫ 2π

0

eiθ + z

eiθ − z
log |F (eiθ)|2dθ,

we easily calculate from (4.11) and (4.12) that

F (z) = C

∏2n−2
j=1 (1 − ᾱjz)∏n
j=1(1 − β̄jz)2

, |αj | ≤ 1, (4.13)

as claimed. �
Several remarks are in order.

(i) If the inner part S of f∗ is a cyclic vector in A2, or, equivalently, by the
Korenblum-Roberts theorem (see [DS], p. 249), its spectral measure puts no mass
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on any Carleson set K ⊂ T, then (4.7) implies right away that f∗ is orthogonal to
all functions in A2 vanishing at β1, β2, . . . , βn, and hence

f∗ =
n∑

j=1

aj

(1 − β̄jz)2

is a linear combination of reproducing kernels. Thus, we have the corollary already
observed in ([AhSh1, AhSh2]):

Corollary 4.2. If f∗ is cyclic in A2, it must be a rational function of the form (4.2).

(ii) On the other hand, if we could a priori conclude that the singular part S
of f∗ is atomic (with spectral measure consisting of at most 2n− 2 atoms), then
instead of using Carleson’s theorem, we could simply take for the outer function
H a polynomial p 
= 0 in D vanishing with multiplicity 2 at the atoms of S. Then
following the above argument, once again we arrive at the conjectured form (1.3)
for the extremalf∗.

Now, following S.Ya. Khavinson’s approach to the problem (2.1) in the Hardy
space context (see [Kh2, pp. 88 ff]), we will sketch an argument, which perhaps,
after some refinement, would allow us to establish the atomic structure of the inner
factor S, using only the a priori H2 regularity.

For that, define subsets Br of spheres of radius r in A2 :

Br := {f = eϕ : ‖f‖A2 ≤ r},
where

ϕ(z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
dν(θ), (4.14)

dν = log ρ(θ)dθ + dµ, (4.15)

and ρ ≥ 0, ρ, log ρ ∈ L1(T), dµ is singular and dµ ≤ 0. Consider the map Λ that
maps the subsets Br into Cn, defined by

Λ(f) = (ϕ(βj))n
j=1.

More precisely, each ϕ is uniquely determined by the corresponding measure ν and
vice versa. Hence, Λ maps the set of measures

Σr := {ν : ν = s(θ)dθ + dµ}
satisfying the constraints

dµ ≤ 0 and dµ is singular (4.16)
exp(s(θ)), s(θ) ∈ L1(T) (4.17)
‖ exp(P (dν))‖L2(D) ≤ r, (4.18)

where

P (dν)(reiα) =
1
2π

∫ 2π

0

1 − r2

1 + r2 − 2r cos(θ − α)
dν(θ)
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is the Poisson integral of ν, into Cn by

Λ(ν) = (S(ν)(βj))n
j=1.

Here

S(ν)(z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
dν(θ) (4.19)

stands for the Schwarz integral of the measure ν. Let us denote the image Λ(Σr)
in Cn by Ar. Repeating the argument in [Kh2] essentially word for word, we easily
establish that for all r > 0, the sets Ar are open, convex, proper subsets of Cn.
(Convexity of Ar, for example, follows at once from the Cauchy-Schwarz inequality
as in the proof of the uniqueness of f∗ in Section 2.) If we denote by �c = (c1, . . . , cn)
the vector of values we are interpolating in (2.1), then the infimum there is easily
seen to be equal to

r0 = inf{r > 0 : �c ∈ Ar}.
Hence, our extremal function f∗ (or equivalently ϕ∗ = log f∗) corresponds to a
measure dν∗ ∈ Σr0 for which Λ(ν∗) ∈ ∂Ar0 . So, to study the structure of extremal
measures ν∗ defining the extremals ϕ∗ or f∗ = eϕ∗

, we need to characterize those
ν∗ ∈ Σr : Λ(ν) ∈ ∂Ar. From now on, without loss of generality, we assume that
r = 1 and omit the index r altogether. Let �w = (w1, . . . , wn) be a finite boundary
point of A. Then there exists a hyperplane H defined by Re

∑n
j=1 ajzj = d such

that for all �z ∈ A,

Re

n∑
j=1

ajzj ≤ d while Re

n∑
j=1

ajwj = d. (4.20)

Let ν∗ denote a preimage Λ−1(�w) in Σ. Using (4.14 and 4.15) we easily rephrase
(4.20) in the following equivalent form:∫

T

R(eiθ)dν(θ) ≤ d (4.21)

for all ν satisfying (4.16), (4.17) and (4.18), (r = 1) with equality holding for

ν∗ = s∗dθ + dµ∗ ∈ Λ−1(�w).

Then (4.14, 4.15 and 4.19) yield

R(eiθ) =
1
2π
Re(

n∑
j=1

aj
eiθ + βj

eiθ − βj
), (4.22)

a rational function with 2n poles at β1, . . . , βn and 1/β̄1, . . . , 1/β̄n that is real-
valued on T. Note the following (see [Kh2]):

Claim. For d in (4.21) to be finite for all measures ν satisfying (4.16), (4.17) and
(4.18), it is necessary that R ≥ 0 on T.
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Indeed, if R(eiθ) (which is continuous on T) were strictly negative on a subarc
E ⊂ T, by choosing dν = sdθ with s negative and arbitrarily large in absolute
value on E and fixed on T − E, we would make the left-hand side of (4.21) go
to +∞ while still keeping the constraints (4.16), (4.17) and (4.18) intact, thus
violating (4.21).

Now, if we knew that R(eiθ) had at least one zero at eiθ0 , we could easily
conclude that the extremal measure ν∗ in (4.21) can only have an atomic singular
part with atoms located at the zeros of R(eiθ) on T. Then, by the argument
principle, since R(eiθ) cannot have more than n double zeros on T, the argument
sketched in Remark (ii) following Theorem 4.1 establishes the desired form of the
extremal function f∗.

To see why a zero of R at eiθ0 would yield the atomic structure of the singular
part dµ∗ of the extremal measure ν∗ in (4.16), (4.17) and (4.18), simply note
that if µ∗ puts any mass on a closed set E ⊂ T where R > 0, we could replace
µ∗ by µ1 = µ∗ − µ∗|E while compensating with a large negative weight at eiθ0

not to violate (4.18). This will certainly make the integral in (4.21) larger, thus
contradicting the extremality of ν∗. Unfortunately, however, we have no control
over whether R(eiθ) vanishes on the circle or not, so this reasoning runs aground
if we are dealing with (4.21) for R > 0 on T. In order to establish the atomic
structure of the singular part of the extremal measure ν∗ in (4.21) for R > 0 on
T, we must come up with a variation of ν∗ which would increase

∫
T
R(eiθ)dν(θ)

without violating (4.18). This is precisely the turning point that makes problems in
the Bergman space so much more difficult than in their Hardy space counterparts.
For the latter, if we had simply gotten rid of the singular part µ∗ in ν, i.e., divided
our corresponding extremal function f∗ by a singular inner function defined by µ∗,
then we would not have changed the Hardy norm of f∗ at all (while we would have
dramatically increased the Bergman norm of f∗). This observation in addition to
the elementary inequality u lnu − u > u ln v − v for any u, v > 0, allowed S.Ya.
Khavinson (see [Kh2]) to show that in the context of Hardy spaces, when (4.18)
is replaced by a similar restriction on the Hardy norm of exp(S(ν)), if R > 0,
the extremal measure ν∗ is simply a constant times logR(eiθ)dθ, and an easy
qualitative description of extremals follows right away.

Now, in view of the above discussion, we cannot expect that for our problem,
when R > 0 on T, the extremal measure ν∗ in (4.21) satisfying (4.16), (4.17)
and (4.18) is absolutely continuous. But where should we expect the atoms of the
singular part µ∗ of the extremal ν∗ to be located? We offer here the following
conjecture.

Conjecture. If R > 0 on T, then the singular part µ∗ of the extremal measure ν∗

in (4.21) is supported on the set of local minimum points of R on T.

In other words, the singular inner part of the extremal function f∗ for Prob-
lem 2.1 corresponding to the boundary point of A defined by the hyperplane (4.20)
is atomic with atoms located at the local minima of R on T.
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The conjecture is intuitive in the sense that in order to maximize the integral
in (4.21), we are best off if we concentrate all the negative contributions from the
singular part of ν at the points where R > 0 is smallest. Note that this conjecture
does correspond to the upper estimate of the number of atoms in the singular
inner part of the extremal function f∗ in (1.3). Indeed, R is a rational function of
degree 2n and hence has 4n− 2 critical points (i.e., where R′(z) = 0) in Ĉ. Since
the number of local maxima and minima of R on T must be the same (consider
1/R instead), we easily deduce that R cannot have more than 2n−2 local minima
(or maxima) on T. (At least two critical points symmetric with respect to T must
lie away from T.)

One possible way to attempt to prove the conjecture using a variation of the
extremal measure ν∗ in (4.21) might be to divide the function f∗ by a function G
that would diminish the singular part µ∗ of ν∗. Of course, a natural candidate for
such a G would be the contractive divisor associated with the invariant subspace
[J ] in A2 generated by a singular inner function J built upon a part µ0 of µ∗ such
that µ0 ≥ µ∗ (recall that µ∗ ≤ 0), such that the support of µ0 is a subset of the
part of the circle that does not contain the local minima of R. Then (cf. [DuKS])
G = hJ , where h is a Nevanlinna function and ‖f∗/G‖A2 ≤ ‖f∗‖, so (4.18) is
preserved. Unfortunately, |h| > 1 on T − supp(µ0), so the resulting measure ν
defined by log(f∗/G) = S(ν) may at least a priori actually diminish the integral
in (4.21) instead of increasing it.

Finally, we remark that for the special case when the βj = 0 and instead of
Problem 2.1 we have the problem of finding

inf{‖f‖Ap : f 
= 0, f (j)(0) = cj , j = 0, . . . , n}, (4.23)

the conjectured general form of the extremal function f∗ collapses to

f∗(z) = C
n∏

j=1

(1 − ᾱjz)
2
p exp(

k∑
j=1

λj
eiθj + z

eiθj − z
), (4.24)

where |αj | ≤ 1, j = 1, . . . , n, k ≤ n, λj ≤ 0. The difference in the degree of the
outer part in (4.24) versus the rational function in (1.3) appears if one follows the
proof of Theorem 4.1 word for word arriving at

|F |2 =

∏n
j=1(z − αj)(1 − ᾱjz)

zn

instead of (4.12).
We shall discuss Problem 4.23 for n = 2 in great detail in the last section.

5. The minimal area problem for locally univalent functions

In this section we shall discuss a particular problem arising in geometric function
theory and first studied by Aharonov and Shapiro in [AhSh1, AhSh2]. The problem
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is initially stated as that of finding

inf{
∫

D

|F ′(z)|2dA : F (0) = 0, F ′(0) = 1, F ′′(0) = b, F ′(z) 
= 0 in D}. (5.1)

Problem (5.1) has the obvious geometric meaning of finding, among all locally
univalent functions whose first three Taylor coefficients are fixed, the one that
maps the unit disk onto a Riemann surface of minimal area. Setting f = F ′ and
c = 2b immediately reduces the problem to a particular example of problems
mentioned in (4.23), namely that of finding

inf{
∫

D

|f |2dA : f 
= 0 in D, f(0) = 1, f ′(0) = c}. (5.2)

Assuming without loss of generality that c is real, we find that the conjectured
form of the extremal function f in (5.2) is

f(z) = C(z −A)eµ0
z+1
z−1 , (5.3)

where µ0 ≥ 0, and C,A, and µ0 are uniquely determined by the interpolating
conditions in (5.2). Of course, if |c| ≤ 1 in (5.2), the obvious solution is

f∗ = 1 + cz,

and hence, F ∗ = z + c
2z

2 solves (5.1), mapping D onto a cardioid. The nontrivial
case is then when |c| > 1. All the results in the previous sections apply, so we know
that the extremal for (5.2) has the form

f∗ = hS,

where h is a bounded outer function and S is a singular inner function. As in Sec-
tion 2, a simple variation gives us the orthogonality conditions (OC) as necessary
conditions for extremality:∫

D

|f∗|2zn+2dA = 0, n = 0, 1, 2, . . . . (5.4)

From now on, we will focus on the non trivial case of Problem 5.2 with c > 1.
Thus, the singular inner factor of f∗ is non trivial (cf. Corollary 4.2). In support
of the conjectured extremal (5.3), we have the following proposition.

Proposition 5.1. If the singular factor S of f∗ has associated singular measure dµ
that is atomic with a single atom, then

f∗(z) = C(z − 1 − µ0)eµ0
z+1
z−1 (5.5)

where C and the weight µ0 are uniquely determined by the interpolating conditions.

Remark. Although we have been unable to show that the singular inner factor
for the extremal f∗ is atomic, we offer some remarks after the proof that do
support our hypothesis. If this is indeed the case, this would be, to the best of
our knowledge, the first example of a “nice” extremal problem whose solution
fails to be Lipschitz continuous or even continuous in the closed unit disk. All
solutions to similar or even more general problems for non-vanishing Hp functions
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are Lipschitz continuous in D̄ (cf. [Kh2] and the discussion in Section 4). Also,
solutions to similar extremal problems in Ap without the non-vanishing restriction
are all Lipschitz continuous in D̄ (cf. [KS]).

Proof. Our normalization (c ∈ R+) easily implies that the only atom of S is located
at 1. So, f∗ = hS, where S is a one atom singular inner function with mass µ0 at
1, and h is outer. By Caughran’s theorem ([Ca]), the antiderivative F ∗ of f∗ has
the same singular inner factor S and no other singular inner factors, i.e.,

F ∗ = HS, (5.6)

where H is an outer function times perhaps a Blaschke product. Writing the or-
thogonality condition (5.4) in the form∫

D

f̄∗f∗z2p dA = 0

for any arbitrary polynomial p, and applying Green’s formula, we obtain∫
T

F̄ ∗f∗z2p dz = 0 (5.7)

for any arbitrary polynomial p. Using (5.6) and SS̄ = 1 a.e. on T yields∫
T

H̄hz3p dθ = 0. (5.8)

Since h is outer, hence cyclic in H2, we can find a sequence of polynomials qn such
that hqn → 1 in H2. Replacing p by qnp and taking a limit when n→ ∞ yields∫

T

H̄z3p dθ = 0 (5.9)

for all polynomials p. This last equation immediately implies that H is a quadratic
polynomial. Now, f∗ = hS = (HS)′ = H ′S + HS′, and S′ = 2µ0

(z−1)2S. Since
f∗ ∈ H2, H must have a double zero at 1 to cancel the pole of S′! Hence H(z) =
C(z − 1)2, F (z) = C(z − 1)2S(z), and f∗(z) = C(z − 1 − µ0) exp(µ0

z−1
z+1 ) as

claimed. �

We want to offer several additional remarks here.
(i) Obviously, the above calculations are reversible, so the function (5.5) does

indeed satisfy the orthogonality condition (5.4) for the extremal.
(ii) The proof of Proposition 5.1 can be seen from a slightly different per-

spective. From Theorem 4.1, it already follows (assuming the hypothesis) that
the outer part of f∗ is a linear polynomial. Moreover, (5.7) implies that the an-
tiderivative F ∗ of f∗ is a noncyclic vector for the backward shift and hence has
a meromorphic pseudocontinuation to Ĉ − D ([DSS]). Accordingly, F ∗ must be
single-valued in a neighborhood of its only singular point {1}. This implies that
f∗ = hS must have a zero residue at 1. (Otherwise F would have a logarithmic
singularity there.) Calculating the residue of f∗ at 1 for a linear polynomial h and
an atomic singular factor S yields (5.5).
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(iii) The only remaining obstacle in solving the extremal problem (5.2) is
showing a priori that the singular inner factor of the extremal function is a one
atom singular function. If one follows the outline given in Section 4, we easily
find that for the problem (5.2), the function R(eiθ) in (4.22) becomes a rational
function of degree 2, and since R ≥ 0 on T,

R(eiθ) = const
(eiθ − a)(1 − āeiθ)

eiθ
= const |eiθ − a|2, (5.10)

where |a| ≤ 1. Thus, as we have seen in Section 4, we would be done if we could
show that the one atom measure is the solution of the extremal problem

max{
∫

T

R(eiθ)dµ(θ) : µ ≤ 0, µ ⊥ dθ} (5.11)

where µ satisfies the constraint∫
D

|h|2|Sµ|2dA ≤ 1 (5.12)

for a given outer function h and R is given by (5.10). (Recall that Sµ is the singular
inner function with associated singular measure µ.) Again, as noted previously, it
is almost obvious when |a| = 1, since then we simply concentrate as much charge
as needed at a to satisfy the constraint without changing the integral (5.11). Yet,
in general, we have no control over where in D a appears.

(iv) Let k(z) denote the orthogonal projection of |f∗|2 onto the space of L2

integrable harmonic functions in D. The orthogonality condition (5.4) implies that
k(z) is a real harmonic polynomial of degree 1. Moreover, due to our normaliza-
tion of the extremal problem (i.e., c ∈ R), we can easily show that f∗ in fact
has real Taylor coefficients. Indeed, f1(z) := f∗(z) satisfies the same interpolating
conditions and has the same L2-norm over D, thus by the uniqueness of the ex-
tremal function, f1 must be equal to f∗. Since f∗ has real Taylor coefficients, the
projection of |f∗|2 is an even function of y, and thus

k(z) = A+Bx, (5.13)

where A =
∫

D
|f∗|2dA and B = 4

∫
D
z|f∗|2dA. The orthogonality condition (5.4)

now implies that the function |f∗|2−k is orthogonal to all real-valued L2 harmonic
functions in D. Using the integral formula in [DKSS2] (or [DS, Chapter 5, Section
5.3]), it follows that ∫

D

(|f∗(z)|2 − k(z))sdA ≥ 0 (5.14)

for all functions s that are smooth in D̄ and subharmonic. The following corollary of
(5.14) offers an unexpected application of the conjectured form of the extremal f∗.

Corollary 5.2. Let w ∈ T, and assume that |f∗|2/|z −w|2 ∈ L1(D). (Note that the
conjectured extremal satisfies this condition at the point w = 1.) Then k(w) ≤ 0.
Thus, if f∗ has the form (5.5), B ≤ −A in (5.13).
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Proof. Choose s(z) = 1/|rw−z|2 for r > 1. Applying (5.14) as r → 1+, we see that
if k(w) > 0, the integral on the left must tend to −∞, which violates (5.14). �

Calculating the classical balayage U(eiθ) of the density |f∗|2dA to T, i.e.,

U(eiθ) = Re
1
2π

∫
D

|f∗|2 e
iθ + z

eiθ − z
dA, (5.15)

expanding the Schwarz kernel eiθ+z
eiθ−z into the power series with respect to z and

using the orthogonality condition (5.4) allows us to cancel all the terms containing
powers of z of degree 2 and higher, so we arrive at

U(eiθ) = A+
B

2
cos θ,

where A and B are as in (5.13). Since U > 0 on T (it is a “sweep” of a positive
measure!), it follows that

Corollary 5.3. A >
|B|
2
, i.e.,

∫
D

|f∗|2dA > 2|
∫

D

z|f∗|2dA|.

A calculation confirms that for f∗ as in (5.5), Corollary 5.3 does hold.

(v) If we denote the value of the minimal area in (5.1) by A = A(b) and
by a3 the coefficient of z3 in the Taylor expansion of the extremal function F ∗

(i.e, F ∗(z) = z + bz2 + a3z
3 + · · · , where F ∗ is the anti-derivative of our extremal

function f∗) then as was shown in ([AhSh2], Theorem 4, p. 21), the following
equality must hold:

(3a3 − 2b2 − 1)A′(b) + 4bA(b) = 0. (5.16)

An involved calculation yields that the conjectured extremal function F ∗ =
∫
f∗,

where f∗ is as in (5.5), does indeed satisfy (5.16). This serves as yet one more
justification of the conjectured form of the extremal. A number of other necessary
properties of the extremal function are discussed in [AhSh1, AhSh2].
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