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Abstract. This paper surveys a large class of nonlinear extremal problems in
Hardy and Bergman spaces. We discuss the general approach to such problems
in Hardy spaces developed by S. Ya. Khavinson in the 1960s, but not well
known in the West. We also discuss the major difficulties distinguishing the
Bergman space setting and formulate some open problems.

1. Introduction

Solving extremal problems has been one of the major stimuli for progress in com-
plex analysis, starting with the Schwarz lemma, on to the celebrated problems of
Carathéodory-Fejér, Kakeya, Landau, etc.., (see the historical notes in [14], pp.
51-54 and pp. 110-112), and finally to general linear problems in Hardy spaces.
Since the introduction of methods of functional analysis (the Hahn-Banach the-
orem) in the study of linear extremal problems in analytic function spaces by
S. Ya. Khavinson in 1949 ([13]) and, independently, by Rogosinski and Shapiro
in 1953 ([25]), the theory of extremal problems in Hardy spaces has achieved a
significant level of elegance and clarity (cf. [7], Ch. 8).

Recently, substantial progress has occurred in the twin theory of linear extremal
problems in Bergman spaces (see [12, 8, 9] and the references cited there). In this
brief survey we are mostly concerned with the problems that are not covered by
the elegant umbrella of clean and simple methods of functional analysis, namely,
non-linear extremal problems. More precisely, we consider here some well-known
basic extremal problems such as finding the maximum value of a simple linear
functional, but posed for non-vanishing functions in either Hardy or Bergman
spaces.

The latter set of functions is obviously non-convex, and accordingly, new methods
are required to solve problems in this new setting. A celebrated example of a
problem that is still far from being solved is the Krzyż conjecture for bounded
non-vanishing analytic functions. Namely, if we consider the family F consisting
of all non-vanishing, bounded analytic functions f(z) =

∑∞
k=0 akz

k such that

2000 Mathematics Subject Classification. Primary: 30H05, Secondary:30E05 .
The work of the first author was supported, in part, by the University of South Florida

Internal Awards Program under Grant No. RO61636.
The second author gratefully acknowledges partial support from the National Science Foun-

dation under the grant DMS-0701873.
1
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|f(z)| ≤ 1 for |z| < 1, the Krzyż conjecture states that, for m ≥ 1,

max {|am| : f ∈ F} =
2

e
.

This conjecture has been proven only for 1 ≤ m ≤ 5 (see [10, 11, 16, 18, 17, 20,
21, 22, 23, 24, 26, 27, 31, 32, 30, 33, 35]). At the same time, if we considered
the linear analogue of this question by removing the condition that f(z) 6= 0
in D, then the problem is trivial and the extremal functions f ∗(z) = eiαzm give
the value 1 for the maximum. S. Ya. Khavinson developed, in the early ’60s, a
general approach to problems for non-vanishing functions in Hardy spaces that
allowed him, if not to solve the problem explicitly, to at least obtain the particular
form of extremal functions. Yet, he did not publish it until the 1970s. Moreover,
the latter work was not translated into English until 1986 (see [14]). Under his
guidance, his former student, V. Terpigoreva, quickly extended his results to
more general Orlicz-Hardy spaces in the paper [37] following her thesis [36]. She
published a complete version with proofs in 1970 (see [38]). This perhaps partly
explains why Khavinson postponed publication of his less general results until
their inclusion in his monograph ([14]) that unfortunately was never published
in Russian in book form.

Some of S. Ya. Khavinson’s results (but not the general method) were rediscov-
ered in the 70s and 80s by western authors (see [11, 32]). Yet, the attack on
extremal problems for non-vanishing functions in Bergman spaces has only just
begun (see [1, 2, 3, 4, 5]), and still, the simplest problems remain unsolved.

The layout of this survey is as follows. In Section 2, we outline S. Ya. Khavin-
son’s theory for Hardy spaces. In Section 3, we illustrate the general theory
by discussing some particular examples in Hardy spaces. Section 4 contains the
discussion of the Bergman space case. There we focus on the simplest problems
that are still unresolved; in particular, we explain in detail where S. Ya. Khavin-
son’s arguments that work so smoothly for Hardy spaces run into a wall in the
Bergman space context. We finish with several observations and conjectures for
the Bergman spaces problem that we hope will attract more researchers to this
field.

Acknowledgement. The authors are grateful to Peter Duren for many helpful
suggestions improving the exposition.

2. General Theory for Hardy Spaces

Let us begin by discussing the general theory of coefficient type extremal prob-
lems for non-vanishing functions in Hardy spaces. This discussion is based on
the work of S. Ya. Khavinson in [14]. (The results there were originally obtained
in the mid 60s, yet the original version of [14] was only published in Russian in
1981.)
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We shall be looking at a general extremal problem of the following type: given
τ0, τ1, . . . , τm ∈ C, find

(2.1) sup
f∈Hp

0

Re

{
m∑

k=0

τk
f (k)(0)

k!

}
,

where Hp
0 is the set of non-vanishing functions in the unit ball of Hp. That is,

Hp
0 := {f : f is analytic and non-vanishing in D,

‖f‖p
p := sup

0<r<1

1

2π

∫ 2π

0

|f(reit)|p dt ≤ 1}.

Let’s define the coefficient region Am(Hp
0 ) ⊂ Cm+1 to be the set of points

~c = < c0, c1, . . . , cm > such that f(z) =
∑m

k=0 ckz
k + . . . for some f ∈ Hp

0 . Notice
that if

f ∗(z) =
m∑

k=0

c∗kz
k + . . .

is a solution to a problem of type (2.1) then

~c ∗ =< c∗0, c
∗
1, . . . , c

∗
m >

is a boundary point of Am(Hp
0 ). Thus, studying the boundary of Am(Hp

0 ) in
Cm+1 gives information about f ∗. Unfortunately, the closure of the coefficient
space Am(Hp

0 ) = Am(Hp
0 ) ∪ {0} is not a convex set because Hp

0 is not convex,
and therefore describing its boundary points is not a straightforward task. How-
ever, every f ∈ Hp

0 can be written as f(z) = exp(q(z)); if we call Q∗
p the class

of logarithms q(z) of functions in Hp
0 , then Q∗

p is now a convex class. The co-
efficient set Am(Q∗

p) corresponding to the set of first m + 1 coefficients of all
elements of Q∗

p is therefore also convex. Moreover, it is not difficult to show

that Am(Q∗
p) is a closed, proper subset of Cm+1 with non-empty interior, and

that there is a homeomorphism between Am(Hp
0 ) and Am(Q∗

p); therefore, finite
boundary points of Am(Q∗

p) correspond to non-zero boundary points of Am(Hp
0 ).

With this relationship in mind, let us study the boundary points of Am(Q∗
p).

Let

~a ∗ =< a∗0, a
∗
1, . . . , a

∗
m >

be a boundary point of Am(Q∗
p). This means that there exists a supporting hy-

perplane passing through that point: that is, there exist constants d ∈ R and
γ0, γ1, . . . , γm ∈ C such that

Re

(
m∑

k=0

γkak

)
≤ d

for every ~a ∈ Am(Q∗
p) and

Re

(
m∑

k=0

γka
∗
k

)
= d.
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In other words, we are interested in finding, given γ0, γ1, . . . , γm ∈ C fixed,

(2.2) λ∗p = sup

{
Re

m∑

k=0

γkak : q(z) =
∞∑

k=0

akz
k ∈ Q∗

p

}
.

Now examine the structure of such functions q a little more closely.

It is well-known (see [7]) that every function f ∈ Hp
0 has non-tangential limits

(almost everywhere on the unit circle T) f(eit) ∈ Lp([0, 2π]), and f can be written
as

(2.3) f(z) = exp (q(z)),

where

(2.4) q(z) =
1

2π

∫ 2π

0

eit + z

eit − z

(
log |f(eit)| dt + dµ(t)

)
,

with µ a negative singular measure on T. If we write

S(t) := log |f(eit)|p,
then S ∈ L1[0, 2π] and

(2.5)
1

2π

∫ 2π

0

eS(t) dt ≤ 1.

Then q can be written

(2.6) q(z) =
1

2πp

∫ 2π

0

eit + z

eit − z
(S(t) dt + dµ(t)) ,

where µ (relabeled) is a negative singular measure on T. Conversely, any function
S ∈ L1[0, 2π] satisfying (2.5) and any negative singular measure µ correspond to
a function f ∈ Hp

0 via (2.3) and (2.6).

Let us define the class σ to be the set of absolutely continuous measures of the
form S(t) dt, where S ∈ L1[0, 2π] satisfies the normalization (2.5), and the class
Σ to be the set of measures S(t) dt + dµ(t), where S ∈ σ and µ is a negative
singular measure on T. Of course σ ⊂ Σ. We have already defined the class Q∗

p as
the set of functions q that have the representation (2.6), where S dt+dµ ∈ Σ; the
class Qp will be defined to be the class of functions q that have the representation

(2.7) q(z) =
1

2πp

∫ 2π

0

eit + z

eit − z
S(t) dt,

where S(t) dt ∈ σ. In other words, the class Q∗
p is the set of logarithms of functions

in Hp
0 , and Qp is the set of logarithms of the outer parts of functions in Hp

0 .

Now, let us get back to Problem (2.2): consider q(z) =
∑∞

k=0 akz
k in Qp or Q∗

p.
Fix γ0, γ1, . . . , γm ∈ C, and consider the extremal problem of finding

(2.8) λp = sup
q∈Qp

Re

(
m∑

k=0

γkak

)

(or the corresponding problem of finding λ∗p for Q∗
p).
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A simple calculation shows that

(2.9) Re

(
m∑

k=0

γkak

)
=

1

2πp

∫ 2π

0

α(t)S(t) dt,

where

α(t) := Re

(
γ0 + 2

m∑

k=1

γke
−ikt

)

and S “represents” q via (2.7), that is, S(t) = p Re q(eit).

Now if α(t) is continuous on the interval [0, 2π], it is not hard to see that the
supremum

(2.10) sup
S∈σ

∫ 2π

0

S(t)α(t) dt

is finite if and only if α(t) ≥ 0 on [0, 2π]. Indeed, if α(t) ≥ 0, then
∫ 2π

0

S(t)α(t) dt ≤
∫ 2π

0

eS(t)α(t) dt < ∞,

since α is continuous on [0, 2π] and S satisfies the normalization (2.5). On the
other hand, suppose there were an interval I and ε > 0 such that α(t) < −ε for
t ∈ I. Then we could construct a sequence of functions SN equal to −N on that
interval I and 0 elsewhere. The measures SN(t) dt certainly lie in the class σ,
and the integrals ∫ 2π

0

SN(t)α(t) dt →∞.

Similarly,

sup
ν∈Σ

∫ 2π

0

α(t)dν(t) < ∞
if and only if α(t) ≥ 0 on [0, 2π]. The following lemma, based on a surprising but
simple inequality, is the key in the solution of this problem.

Lemma 2.1. Let α(t) ≥ 0 on [0, 2π]. Then

sup
S∈σ

∫ 2π

0

α(t)S(t) dt = sup
ν∈Σ

∫ 2π

0

α(t)dν(t)(2.11)

=

∫ 2π

0

α(t) ln
α(t)

A
dt,(2.12)

where A = 1
2π

∫ 2π

0
α(t) dt.

Proof. Since µ is a non-positive measure and α(t) ≥ 0, for any S ∈ σ,
∫ 2π

0

α(t)(S(t) dt + dµ(t)) ≤
∫ 2π

0

α(t)S(t) dt,

and equality will only hold when µ is a measure that has support where α(t) = 0.
Therefore, (2.11) is clear.
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Notice that it is enough to consider S ∈ σ such that

1

2π

∫ 2π

0

eS(t) dt = 1.

Now, the following simple inequality can be checked directly, for any u, v > 0 :

(2.13) u ln u− u ≥ u ln v − v.

Moreover, if u 6= v, then the inequality is strict. Applying (2.13) to u = α(t)/A
and v = eS(t) gives

α(t)

A
ln

(
α(t)

A

)
− α(t)

A
≥ α(t)

A
ln

(
eS(t)

)− eS(t).

Integrating both sides and simplifying then gives

1

2π

∫ 2π

0

α(t) ln

(
α(t)

A

)
dt ≥ 1

2π

∫ 2π

0

α(t)S(t) dt,

since
1

2π

∫ 2π

0

α(t)

A
dt =

1

2π

∫ 2π

0

eS(t) dt = 1.

If ln(α(t)
A

) ∈ L1[0, 2π], then the extremal problem is solved uniquely for S(t) =

ln(α(t)
A

). Otherwise, a standard approximation of ln(α(t)
A

) by, say, step functions,
shows that

sup
S∈σ

∫ 2π

0

S(t)α(t) dt =

∫ 2π

0

α(t) ln
α(t)

A
dt,

although the extremal problem has no solution in σ or Σ. 2

The supremum in the problem (2.8)

λp = sup
q∈Qp

Re

(
m∑

k=0

γkak

)

will be finite, therefore, if and only if α(t) ≥ 0. Since α(t) is a trigonometric
polynomial of order m, by the Fejér-Riesz theorem ([15, 34]), this implies that
α(t) = |P (eit)|2, where P (z) is an analytic polynomial of degree m. Writing

P (z) = C

m∏

k=1

(1− ᾱkz),

where αk ∈ D and C is a positive constant, we see that

ln(α(t)) = 2 ln C + 2
m∑

k=1

ln |1− ᾱke
it|.

Therefore S(t) = ln(α(t)
A

), where A = Re(γ0), and so

(2.14) q(z) =
2

p
ln(

C

A
) +

2

p

m∑

k=1

ln(1− ᾱkz)

is the unique extremal function that solves (2.8).
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In addition, if we consider the problem for λ∗p of finding

λ∗p = sup

{
Re

m∑

k=0

γkak : q(z) =
∞∑

k=0

akz
k ∈ Q∗

p

}
,

the corresponding singular measure may only have mass at the zeros of α(t), and
so extremal solutions to the problem for λ∗p are given by functions

(2.15) q∗(z) = q(z)−
∑

|αk|=1

λk
αk + z

αk − z
,

where q is as in (2.14), and λk ≥ 0 are arbitrary.

In other words, what we have shown so far is that if

~a ∗ =< a∗0, a
∗
1, . . . , a

∗
m >

is a boundary point of Am(Q∗
p), then any function q∗(z) ∈ Q∗

p that corresponds

to that boundary point (i.e., q∗(z) =
∑m

k=0 a∗kz
k + . . .), must have the general

form (2.15). In fact, it turns out that there is a unique function q∗ ∈ Q∗
p that

corresponds to a given boundary point ~a ∗. This follows from the fact that q∗

is determined by its representing measure ln(α(t)
A

) dt + dµ(t), where α(t) and A
are uniquely determined, and µ is a singular measure with at most m atoms on
the circle. But the first m + 1 coefficients of q∗ are determined, which forces
the measure µ to be determined as well. (For full details, see [14, p. 91].)
Finally, by appealing to the homeomorphism between Am(Q∗

p) and Am(Hp
0 ) via

f(z) = exp(q(z)), we arrive at the following theorem.

Theorem 2.2. ([14]) To each non-zero boundary point

~c ∗ =< c∗0, c
∗
1 . . . , c∗m >∈ Am(Hp

0 ),

there corresponds a unique function f ∈ Hp
0 such that

f(z) =
m∑

k=0

c∗kz
k + . . . .

This function has the form

(2.16) f(z) = C

m∏

k=1

(1− ᾱkz)
2
p exp


−

∑

|αk|=1

λk
αk + z

αk − z


 ,

where C > 0 is a constant such that

1

2π

∫ 2π

0

|f(eit)|p dt = 1,

|αk| ≤ 1, and λk ≥ 0.

Remark.The above reasoning applies to any extremal problem involving Taylor
coefficients of non-vanishing functions, and its solution will be unique whenever
the extremal function in the problem determines a boundary point in Am(Hp

0 );
e.g., as in minimal interpolation problems of finding inf ‖f‖p for nonvanishing
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functions f ∈ Hp with prescribed initial coefficients c0, c1, . . . , cm. The same type
of argument also applies to interpolation problems where the origin is replaced
by arbitrary points in the unit disk.

3. Some specific problems in Hardy Spaces

Let us now consider some specific examples of problems of type (2.1)

sup
f∈Hp

0

Re

{
m∑

k=0

τk
f (k)(0)

k!

}
.

One of the simplest problems of this type is that of finding, for a positive integer
m,

(3.1) sup
f∈Hp

0

Re

{
f (m)(0)

m!

}
.

Surprisingly, for p > 1, the exact form of the extremal function is unknown for
m ≥ 3. By Theorem 2.2, we know that the extremal solution is the 2/p-th power
of a polynomial of degree m times a singular function with atomic masses at at
most m points on the circle. Those points on the circle can only occur where the
polynomial has roots on the circle.

In particular, if we look at the “limiting case”, that is, when p = ∞, we see that
the solution to

(3.2) sup
f∈H∞

{
Re

f (m)(0)

m!
: ‖f‖∞ ≤ 1 , f non-vanishing in D

}

must be a singular function with at most m atomic masses on the circle. That
the value of that supremum is 2/e and occurs when the singular function has
masses at the roots of unity is the famous Krzyż conjecture, which remains an
open problem for m > 5. It is known to be true for m = 1, 2, and 3 (see [11] and
the discussion there), m = 4 (see [35], and also [33]), and m = 5 ([30]). We also
refer the reader to [18, 17, 20, 21, 22, 23, 24, 26, 27] for further developments.
Significantly, Horowitz ([10]) showed that the supremum in (3.2) is strictly less
than 1.

While studying the Krzyż conjecture and proving the m = 3 case, the authors in
[11] conjectured that the solution to Problem (3.1) for non-vanishing functions
in Hp, p > 1, is

(3.3) sup
f∈Hp

0

Re

{
f (m)(0)

m!

}
=

(
2

e

) 1
q

,

where 1
p

+ 1
q

= 1 and m ≥ 1. The conjectured extremals are

f ∗(z) =

(
(1 + zm)2

2

) 1
p

(
exp

zm − 1

zm + 1

) 1
q

.
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The authors note that for p = 1, the functions

fm(z) =
(1 + zm)2

2

are extremal for Problem (3.1) and, for all m ≥ 1,

(3.4) sup
f∈H1

0

Re

{
f (m)(0)

m!

}
= 1.

They also remark that uniqueness of extremals fails badly here: any function

f(z) = C

m∏
j=1

(z − αj)(1− ᾱjz),

where |αj| = 1 and C is chosen so that ‖f‖H1 = 1 is also extremal. Note that
all of these extremals are of the general form (2.16) from Section 2. Conjecture
3.3 for non-vanishing Hardy space functions was shown to be true for m = 1 in
[6] and for m = 2 in [32].

While studying explicit solutions to linear extremal problems in Hp, the authors
in [5] considered the related problem of finding, for p ≥ 1, m ≥ 1, and 0 < c < 1
fixed,

(3.5) max
f∈Hp

0

{
Re f (m)(0)/m! : f(0) = c

}
.

They were only able to solve this problem explicitly for m = 1. The extremals
depend on the value of c : if 0 < c < 2−1/p, then the extremal function has a
singular part and is equal to

f ∗(z) = 2−
1
p (1 + z)

2
p exp

(
−µ0

−1 + z

−1− z

)
,

where µ0 = − log(2
1
p c), while if 2−1/p ≤ c < 1, then the extremal has no singular

part and is equal to

f ∗(z) =
(
c

p
2 + z

√
1− cp

) 2
p
.

By varying c and finding the corresponding maximum, the authors gave another
proof of Conjecture (3.3) for m = 1. Problem (3.5) is equivalent to an interpola-
tion problem for non-vanishing functions, of finding, for c0, . . . , cm fixed,

inf{‖f‖p : f(0) = c0, . . . ,
f (m)(0)

m!
= cm, f ∈ Hp, f non-vanishing }.

If we fix for instance, m = 1, p = 2, and c < 0, then the following infimum

(3.6) inf {‖f‖p : f(0) = 1, f ′(0) = c, f ∈ Hp, f non-vanishing }
is attained by the trivial solution f ∗(z) = 1 + cz if |c| ≤ 1, otherwise by

f ∗(z) = C(1 + z) exp

(
−µ0

1 + z

1− z

)
,

where C and µ0 are determined by the interpolating conditions. Notice that, as
in the general form of the extremal in (2.16), the point mass of the singular part
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occurs exactly at the zero of the outer part of f ∗, making the extremal function
continuous in the closed unit disk. This example will be discussed in more detail
in the Bergman space setting in the following section.

Finally, we note that in [31], the author proved a “Horowitz type” result for the
Hp space problem (3.1), namely that for each 1 < p < ∞, there exists a bound
Cp < 1 such that

sup
f∈Hp

0

Re

{
f (m)(0)

m!

}
≤ Cp.

4. Discussion of the Bergman space setting

Now let’s discuss where and why the approach discussed in Section 2 fails in the
context of Bergman spaces. So, for 0 < p < ∞, let

Ap =

{
f analytic in D :

(∫

D
|f(z)|p dA(z)

) 1
p

=: ‖f‖Ap < ∞
}

,

where dA denotes normalized area measure in the unit disk D. We will write Ap
0

for the set of Ap functions that are non-vanishing. (We do not restrict Ap
0 to

functions of norm less than or equal to 1, here, as we did in the Hardy space
case.)

For an account of the modern state of Bergman space theory, we refer the reader
to the recent monographs [8, 9] on the subject.

We consider the following “model” extremal problem for the Taylor coefficients
of non-vanishing functions: find

(4.1) inf

{∫

D
|f |p dA : f ∈ Ap

0 , f (j)(0) = cj , 0 ≤ j ≤ m

}
,

where the cj are given non-zero complex numbers. (See [1] for a detailed discus-
sion.)

First, note that since for any g ∈ Ap
0, the function f := g

p
2 ∈ A2

0, it suffices to
carry out the analysis of (4.1) for p = 2 alone. Thus, from now on, p = 2. Also,
without loss of generality, we can assume that c0 = 1.

As was noted in [1], the solution to (4.1) always exists and is unique. Moreover,
by writing every f ∈ Ap

0 as f = eq, q analytic in D, we note that we can rewrite
(4.1) as

(4.2) inf
{‖eq‖A2 : q is analytic in D , q(j)(0) = aj , 0 ≤ j ≤ m

}
.

By considering the “cut-off” problem (4.2) with q running over the class Pn of
polynomials of degree n ≥ m and showing that the exponentials ep∗n of extremal
polynomials p∗n in (4.2) have uniformly bounded H2 norms, then taking a limit
as n →∞, it was shown in [1], following the ideas in [29, 12], that the extremal
function f ∗ = eq∗ for (4.1) must actually be in the Hardy class H2. In particular,
the extremal function f ∗ has well-defined boundary values. Furthermore, by
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using a more delicate variation stemming from the seminal work in [2, 3, 4] on
the so-called minimal area problem, i.e., the problem of finding, for b fixed,

(4.3) inf

{∫

D
|F ′|2 dA : F (0) = 0, F ′(0) = 1, F ′′(0) = b, F univalent in D

}
,

it was shown in [1] that the extremal f ∗ is in fact bounded in D. It was conjectured
in [1] that the extremal function f ∗ has the form (for p = 2):

(4.4) f ∗(z) = C

m∏
j=1

(1− ᾱjz) exp

(
k∑

j=1

λj
eiθj + z

eiθj − z

)
,

where |αj| ≤ 1, j = 1, . . . , m, k ≤ m, and λj ≤ 0 and C > 0 are constants.
Thus, the conjectured extremal function f ∗ in the Bergman space context has a
form similar to that of the extremal in non-vanishing Hardy spaces. Yet, even
for m = 1, that is, for a problem of type (4.3) for locally univalent functions,
the above form (4.4) has not yet been proved. Moreover, if the conjectured form
(4.4) is correct, it was shown in [1] that the extremal f ∗ for (4.1), m = 1, is

(4.5) f ∗(z) = C(z − 1− µ0)e
−µ0

1+z
1−z ,

where the constants C and µ0 depend on the data c0 and c1. (Note that here
we are considering the non-trivial case |c0| < |c1|. If |c0| ≥ |c1|, then the above
problem is trivially solved by f ∗(z) = c0 + c1z.) If so, this will provide the
first known example of a discontinuous solution to these very simple extremal
problems, something that never happens for similar interpolation problems with
finitely many contraints in Hardy spaces.

Let us sketch here the main differences between the Bergman and Hardy spaces
problem to illustrate why the approach that works so well for Hardy spaces runs
into a snag in the Bergman space context. Since the extremal functions for (4.2)
belong to H2 (and even H∞), q∗(z) = log f ∗, f ∗ ∈ A2

0 is representable by the
Schwarz integral

(4.6) q∗(z) =
1

2π

∫ 2π

0

eit + z

eit − z
dν∗(t),

where

dν∗(t) = log ρ∗(t) dt + dµ∗(t)(4.7)

ρ∗ ≥ 0, ρ∗, log ρ∗ ∈ L1(T), dµ∗ ≤ 0 and singular.(4.8)

Consider subsets Br of the balls of radius r > 0 in A2
0 :

Br := {f = eq, ‖f‖A2 ≤ r},
where q is of the form (4.6). Consider the map Λ : Br → Cm+1 defined

Λ(f) =< q(j)(0) >m
j=0 .

Clearly, Λ maps the set of functions representable by the measures

Σr := {ν : dν(t) = log ρ(t) dt + dµ(t), ρ, µ satisfying (4.8), ‖eq‖A2 ≤ r}
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into Cm+1. Following S. Ya. Khavinson’s scheme from Section 2, it is straight-
forward to show that the image Ar := Λ(Σr) is a closed, convex, proper subset
of Cm+1 with non-empty interior. If we denote by ~a =< a0, . . . , am > the vector
of coordinate data in (4.2), then the value of the infimum in (4.2) equals

r0 = inf{r > 0 : ~a ∈ Ar}.
Hence, the extremal function f ∗ corresponds to the extremal measure ν∗ ∈ Σr0

for which Λ(ν∗) is in the boundary of Ar0 . Thus, as in the previous situation, we
are interested in describing the boundary of Ar0 .

To simplify notation, let us suppose r0 = 1 and omit the index r altogether. If
~w =< w0, w1, . . . , wm > is a finite boundary point of A, there exists a hyperplane

H : Re

(
m∑

j=0

ajzj

)
= d

in Cm+1 passing through ~w such that for all z ∈ A,

(4.9) Re

(
m∑

j=0

ajzj

)
≤ d,

while

Re

(
m∑

j=0

ajwj

)
= d.

Let ν∗ = Λ−1(~w) ∈ Σ. From (4.6), (4.7), and (4.8), we infer that the above
inequality (4.9) becomes

(4.10)
1

2π

∫

T
P (eiθ)dν(θ) ≤ d

for all ν ∈ Σ, where

P (eiθ) = Re

(
m∑

j=0

aje
ijθ

)

is a trigonometric polynomial of degree m. Again, as before, we note that for d
in (4.10) to be finite for all measures ν ∈ Σ, it is imperative that P ≥ 0 on T. In
view of the Fejér-Riesz Theorem (see [15], or [34], Chapter I, Sect. 1.2),

P (eiθ) = a

n∏
j=0

|1− αje
iθ|2,

where |αj| ≤ 1 and a > 0 are constants. Indeed, if P < 0 on an arc E of the
circle, we could choose dν = sdθ with s negative and large in absolute value on
E and fixed on the rest of the circle, thus making the left hand side of (4.10)
arbitrarily large and positive while keeping the constraints on the set Σ intact.
Now we run into a wall. In order to establish the atomicity of the singular part
µ∗ of the extremal measure ν∗ in (4.10), we must come up with a variation of ν∗

that increases (4.10) without taking us out of the set Σ, i.e., without violating
the norm restriction on ‖eq‖. For the Hardy space norm, dropping the singular
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inner factor altogether does not change the norm at all, which is certainly not
the case in the Bergman space. If P has at least one zero eit0 = α0 on the unit
circle, we would immediately be able to verify that the singular part µ∗ in the
extremal measure ν∗ in (4.10) is atomic. Simply note that if µ∗ put mass on a set
E ⊂ T where P > 0, we could replace µ∗ by µ1 = µ∗ − µ∗|E while compensating
with a large negative point mass at eit0 not to increase the norm ‖eq‖. This would
make the integral in (4.10) larger (the mass at eit0 does not change its value),
contradicting the extremality of ν∗.
It was shown in [1] (even for a slightly more general problem than in (4.1)) that
if the singular part µ∗ in the representation (4.6) of q∗ = log f ∗ is supported
on a Carleson set, then the outer factor of f ∗ is indeed a polynomial as in the
conjectured form (4.4). The proof is rather intricate and relies on the Korenblum-
Roberts description of H2 functions that are cyclic for the Bergman shift.

Here is the gist. A standard variational argument (see [1, 12]) shows that if f ∗

is an extremal function in (4.1), then f ∗ satisfies the following “orthogonality”
conditions

(4.11)

∫

D
|f ∗(z)|2zm+k+1 dA(z) = 0, k = 0, 1, 2, . . .

Now we are trying to show that the outer part of f ∗ is a polynomial of degree at
most m. In view of the Fejér-Riesz theorem cited above, it certainly suffices to
show that

(4.12)

∫

T
|f ∗(z)|2ei(m+k+1)t dt = 0, k = 0, 1, 2, . . .

Replacing dt by izdz̄, applying the complex form of Green’s theorem to (4.12),
and using (4.11), we arrive at

i

∫

T
|f ∗(z)|2zm+2+kdz̄ = 2(m + 2 + k)

∫

D
|f ∗(z)|2zm+1+k dA(z)

+ 2

∫

D
f ∗(z)f ∗

′
(z)zm+2+k dA(z)

= 2

∫

D

f ∗
′
(z)

f ∗(z)
|f ∗(z)|2zm+k+2 dA(z).

Now, since we know that f ∗ ∈ H∞ (see [1]), the condition (4.12) would follow
at once from (4.11) provided that (log f ∗)′ = (f ∗)′/(f ∗) is integrable in D (with
respect to the weight |f ∗|2). However, to show the latter is a major technical
difficulty. In general, if we write (log f ∗)′ as

(q∗)′(z) =

(
1

2π

∫ 2π

0

eit + z

eit − z
dν∗(t)

)′
,

no conclusion regarding the integrability of q∗ can a priori be made. Assuming
that the singular part dµ∗ of the extremal measure dν∗ in (4.6) is supported on a
Carleson set essentially allows us to make the above argument rigorous (see [1],
also see similar arguments in [12]). Unfortunately, we still do not know how to
circumvent this assumption on the measure.
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5. Further Conjectures

In the setting of the linear version of the problem (4.1) (i.e., without the non-
vanishing restriction), the use of duality and powerful results from PDE allowed
the authors in [12] to make the argument at the end of the previous section
legitimate. Lack of linearity, and therefore, the unavailability of duality present
a formidable obstruction.

(i) Pertinent to the discussion in Section 4, we can expect the singular part µ∗ of
the extremal measure ν∗ in (4.6) to be non-trivial. The question is, where should
we expect the atoms of the singular measure to be located? The example in [1]
for Problem (4.1) with m = 1 shows that it may be possible that the extremal
functions in Bergman spaces need not be continuous in the closed disk, so the
atoms are not expected to be at the zeros of P ≥ 0.

The following conjecture was offered in [1].

Conjecture 5.1. If P > 0 on the unit circle T, then the singular part µ∗ of the
extremal measure ν∗ is supported on the set of local minimum points of P on T.

In other words, the singular inner part of the extremal function f ∗ for Problem
(4.1) is atomic with atoms located at the local minima of P on T. The conjecture
is intuitive in the sense that in order to maximize the integral∫

T
P dµ,

we are best off if we concentrate all the negative contributions from the singular
factor at the points where P is smallest.

(ii) What can be said in relation to a Krzyż type conjecture in the context of
Bergman spaces? In [28] (also, cf. [19, 39, 40]), Ryabych solved the problem of
finding, for p ≥ 1 and m ≥ 1,

(5.1) max Re
{
f (m)(0)/m! : ‖f‖Ap ≤ 1

}

and showed that the extremal function is

f ∗(z) =

(
mp + 2

2

) 1
p

zm,

thus making the maximum in (5.1) equal to (mp+2
2

)
1
p . Of course, the latter quan-

tity tends to 1 (the H∞ case) when p →∞.

What are we to expect in Problem (5.1), but set in Ap
0 rather than Ap? Let us

consider that problem for m = 1, p = 2. If the conjecture in [1] regarding the
general form of the extremal function is true, then

(5.2) f ∗(z) = C(z − 1− µ) exp

(
µ

1 + z

z − 1

)
,

where µ > 0 and C = C(µ) is a constant such that ‖f ∗‖Ap = 1. If we denote by F ∗

the antiderivative of f ∗ such that F ∗(1) = 0, then F ∗(z) = C
2
(z−1)2 exp

(
µ1+z

z−1

)
.



NON-VANISHING FUNCTIONS 15

Using the complex form of Green’s theorem together with the fact that∣∣∣∣exp

(
µ

1 + z

z − 1

)∣∣∣∣ = 1 a.e. on T,

we calculate

∫

D
|f ∗(z)|2 dA =

i

2π

∫

T
F ∗(z)f ∗(z) dz̄

=
i

2π

∫

T
F ∗(z)f ∗(z)(−i)z̄ dθ

=
1

2π

∫

T

C

2
(z − 1)2 exp

(
µ

1 + z

z − 1

)
C(z̄ − 1− µ) exp

(
µ

1 + z

z − 1

)
z̄ dθ

=
C2

2

1

2π

∫

T
(z2 − 2z + 1)(z̄ − (1 + µ)) z̄ dθ

=
C2

2
(3 + 2µ).

Since
∫
D |f ∗(z)|2 dA = 1, we get that C =

√
2

3+2µ
, where µ > 0. Substituting C

into (5.2), we obtain

(5.3) (f ∗)′(0) =

√
2

3 + 2µ
e−µ(1 + 2µ + 2µ2).

It is not hard to see that this function of µ, when µ > 0, is maximized when
µ = 1. We thus obtain

(5.4) max {Ref ′(0) : ‖f‖A2 ≤ 1 , f non-vanishing in D} =
√

2

√
5

e
.

It is also natural then to expect that an extremal function for any m in the
problem

(5.5) max{Ref (m)(0) : ‖f‖A2 ≤ 1 , f non-vanishing in D}
would be cmf ∗(zm), where f ∗ is the extremal for (5.4)and cm is the normalizing
constant. From this, we leap to the following rather bold conjecture, although
present evidence in its favor is not abundant.

Conjecture 5.2.

lim sup
m→∞

max
{
Re f (m)(0)/m! : ‖f‖A2 ≤ 1 , f non-vanishing in D

}
√

m
≤
√

5

e
.

Since we still have not been able to completely solve the above problem for
m = 1, it is really premature to speculate about the precise asymptotics of the
maximum above. However, it may be plausible to obtain “Horowitz type” results
for Ap functions even without solving this problem explicitly. Thus, we suggest
the following, more realistic problem. Let 1 < p < ∞, and define

Λm = Λm,p = max{Re f (m)(0)/m! : ‖f‖Ap ≤ 1 , f non-vanishing in D}.
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Conjecture 5.3.

lim sup
m→∞

Λm

(mp+2
2

)
1
p

< 1.

Denote by λm the analog of Λm in the Hp
0 -context. A priori, of course, Λm ≥ λm.

Question. What are the asymptotics of Λm? Is Λm ∼ λm m1/p ?

We think that perhaps with the advances in the theory of Bergman spaces in
the last decade, the time has come for a thorough study of these fundamental
extremal problems.
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20. R. Peretz, The Krzyż problem and polynomials with zeros on the unit circle, Complex
Variables Theory Appl. 47 (2002), no. 3, 271–276.

21. R. Peretz, Applications of subordination theory to the class of bounded nonvanishing
functions, Complex Variables Theory Appl. 17 (1992), no. 3-4, 213–222.

22. R. Peretz, Some properties of extremal functions for Krzyż problem, Complex Variables
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