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Preface

Laslt year, the Seventy-Fifth (and final) Yearbook of the National Council of Teachers of
Mathematics (NCTM 2013*) was published as a celebration of the record of rich contributions
these annual publications have made to the field of mathematics education. Longtime NCTM
members regularly comment on the yearbooks as “a favorite from NCTM,” one prized enough to
earn an office shelf dedicated to their personal volumes. (You can learn more about the yearbook’s
history in the preface and introduction to the seventy-fifth volume.) Why, then, would NCTM
want to change such an important publication?

When the NCTM yearbook was first published in 1926, it was the only book published
annually by the Council. Since that time, NCTM has substantially increased the number of
its publications and broadened their scope. Thus the NCTM Board of Directors and members
recognized a need to reexamine the yearbook’s role and purpose. In 2010, the NCTM Board of
Directors appointed a Yearbook Task Force charged with considering the role of the yearbook
among the many other NCTM publications (i.e., “Does the Yearbook continue to serve a need
for members and others in the field?”) and possibly proposing alternatives to the yearbook. As a
result of the task force’s final recommendation, the Board of Directors approved the creation of
annual publication designed to uphold the strong traditions of the yearbook while also changing
in ways that would reflect twenty-first-century needs and opportunities as well as initiate a more
global conversation about mathematics education. As part of this change, the Yearbook Task
Force recommended a new title. The title of “yearbook” made sense when the volume was the only
book of the year from NCTM. Moreover, NCTM surveys of members revealed that many newer
members did not understand the purpose of the yearbook—some members even wondered if it
contained photos of members much like a high school yearbook. Thus, the title Annual Perspectives
in Mathematics Education clearly reflects this book’s role and purpose: providing members with
a range of perspectives on timely topics in mathematics education each year. APME will take on
important topics, offering a range of authors (including classroom teachers, university researchers,
professional developers, and occasionally educators outside of mathematics education), targeting a
diverse audience that reflects our membership, and providing a collection of chapters that span the
pre-K-16 spectrum.

As we considered how APME could best meet current needs and take advantage of tech-
nological advances in publishing, we decided to institute some different procedures from those
used to create the yearbook. In today’s world, research is published at a faster rate, policies change
frequently, and educators need access to current and high-quality information,-perspectives, and
findings much more quickly than in the past. In order to ensure that /PME is timely, the time-
line from conceptualizing the topic or theme to printing needed to be reduced. The topic for this
initial 2014 volume—Using Research to Improve Instruction—was selected less than two years
prior to its publication. This is approximately half of the time that had been allotted for planning,

;National Council of Teachers of Mathematics (NCTM). Defining Mathematics Education. Presidential
5{17/700& Selections, 1926—-2012. Seventy-fifth Yearbook of the National Council of Teachers of Mathematics,
edited by Francis (Skip) Fennell. Reston, Va.: NCTM, 2013.
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selecting chapters for, editing, and printing each yearbook. Moreover, the time from when
APME authors first submit manuscripts to publication is approximately one year—a considerably
shorter publication timeline than authors experience with most professional journals. Given that
all APME manuscripts undergo a blind peer-review process (at least three reviewers read each
manuscript, provide recommendations, and then either ask for revisions or decline the manuscript)
and that manuscripts were often substantially revised based on reviewers’ and editors’ recommen-
dations, APME’s timeline is aggressive.

Developments in the publishing process have enabled this ambitious timeline, and dedicated
and time-sensitive efforts from authors, editorial panel members, and editors were also critical to
this change. For this very first APME volume, we experienced an enthusiastic response to a call for
manuscripts. Indeed, after undergoing a blind review, the acceptance rate was 27 percent. With the
shortened timeline of APME and the corresponding opportunity to publish perspectives on issues
as they affect educators, students, and schools, it is our hope, and that of NCTM, that readers
will find 4PME at the forefront of today’s issues. Our goal is to create a publication that addresses
current topics, provides high-quality manuscripts from a range of perspectives, and exposes readers
to the most current research to inform practice.

Another important element of APME relates to access. Online access to professional
publications has become an expectation in today’s world. Individual chapters from most NCTM
yearbooks could not be accessed in the same way as journal articles through library systems or
NCTM’s online website. When the Yearbook Task Force first identified this problem in 2010,
NCTM quickly moved to provide access to individual yearbook chapters with an online purchase
option through the NCTM website. However, library access remained difficult. APME is classi-
fied as a periodical published annually so that library systems will treat each chapter as a journal
article. With this change, chapters will be easy to access through library-based searches or through
other forms of online searches. An additional benefit of this classification, for those authors
needing to report on the impact of their work, is that APMFE now falls under the more traditional
academic category of a blind, peer-reviewed journal that is published annually.

Creating the Inaugural Volume

As Amy Roth McDufhie (APME’s first series editor) and the members of the NCTM’s
Educational Materials Committee (EMC) looked to select an initial topic and a volume editor,
they aimed to create a volume that would be important and immediately beneficial to all NCTM
members. For this reason, they decided to focus on the goal that has been at the core of NCTM’s
mission since its inception: supporting teachers to improve instruction through research-based
approaches. Karen Karp was selected to edit this first volume, and she in turn selected Barbara
Dougherty, Francis (Skip) Fennell, Elham Kazemi, Matt Larson, Travis Olson, Nelson Palmer,
and Christine Suurtamm to round out the Editorial Panel. The Editorial Panel made a purposeful
decision to rely strictly on a peer-review process for all APME manuscripts and not to extend
invitations for particular authors to write chapters on specific topics. The panel then discussed
and decided on themes and topics of interest for the volume and collected these in a list. Next, for
the first time an Intent to Submit application was used so that the Editorial Panel would be able
to plan with these possible topics in mind; fortunately, an enthusiastic response from hundreds

of authors was received. There were several levels to the review process with all authors respond-
ing under tight deadlines. The chapters were regrouped into five sometimes overlapping clusters
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that the panel decided were at the forefront of mathematics education: Change; Problem Solving;
Reasoning, Explaining, and Discourse; Seeing Structure and Generalizing; and Assessment for
Teaching and Learning. The results are exciting and provocative, and the Editorial Panel is hope-
ful that readers will agree and find that the 2014 inaugural volume of APME makes an important
contribution to supporting the teaching and learning of mathematics.

'

In Appreciation

First and foremost, the Editorial Panel members were central to the work herein. They read
chapters multiple times, giving detailed comments, edits, and direction, and they responded in a
very rapid succession of reviews.

We also would like to acknowledge the contributions and guidance of the NCTM
Headquarters staff. Those individuals who supported the production of the volume include Ken
Krehbiel, associate executive director for communications; Joanne Hodges, senior director of
publications; Myrna Jacobs, publications manager; Larry Shea, copy and production editor;
Elizabeth Pontiff, text editor; Kathe Richardson, meeting planner; and many others who worked
behind the scenes. In addition, a number of NCTM members provided guidance and input on the
volume and on the purpose of #PME, including William Speer and Rheta Rubenstein (previous
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during the production of this volume), EMC committee members, Yearbook Task Force members,
as well as many other NCTM members who were willing to share their ideas. We are grateful for
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® CHAPTER 15

Promoting Mathematical Reasoning
through Critiquing Student Work

Catherine Bénéteau, University of South Florida, Tampa
Sarah K. Bleiler, Middle Tennessee State University, Murfreesboro
Denisse R. 'Ihompson, University of South Florida, Tampa

M athematical reasoning, eventually resulting in formal proof, is an essential component
of mathematical learning and can range “from informal explanation and justification to for-
mal deduction, as well as inductive observations. Reasoning often begins with explorations,
conjectures at various levels, false starts, and partial explanations before a result is reached”
(National Council of Teachers of Mathematics [NCTM] 2009, p. 4). Often, reasoning is
described as a habit of mind. Indeed, the third Standard for Mathematical Practice of the
Common Core State Standards for Mathematics (CCSSM) focuses on the need to “con-
struct viable arguments and critique the reasoning of others,” reinforcing the importance
of reasoning throughout the curriculum (National Governors Association Center for Best
Practices [NGA Center] and Council of Chief State School Officers [CCSSO] 2010, p. 6).

Instructors at all levels often struggle with how to develop rich, cognitively demanding
tasks to engage students in reasoning about mathematics and critiquing mathematical argu-
ments. Preservice secondary mathematics teachers (PSTs), in particular, need experiences
within their mathematics content courses with such tasks to facilitate their own mathemati-
cal growth and to reflect upon the potential benefit of such tasks for their future high school
students. Throughout these experiences, PSTs should become more sophisticated in their
reasoning and their “standards for accepting explanations should become more stringent”
(NCTM 2000, p. 342).

In this chapter, we share a strategy used with thirty-one PSTS in a mathematics-content
course to engage them in discourse with their peers and the instructors. Although our
work occurred within the context of geometry, we believe the strategy can be applied across
content domains as well as grade levels (e.g., middle or high school courses). We share
the strategy and its implementation as well as comments from PSTs that indicate how
the activities may have influenced their learning. We relate implications for practice to a
framework related to metaknowledge about proof.
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m Context

A group of mathematicians and mathematics educators collaborated to design and teach a
geometry course and then a content pedagogy course in the subsequent semester with many of the

same PSTs. Within geometry, we had several goals:

e PSTswould learn mathematics through an inquiry approach.
e PSTs would use discourse, often within small groups, to reason about mathematics.

e  PSTs would develop proficiency in writing mathematical proofs, and use mathematical
language appropriately. (Thompson et al. 2012)

We used Stylianides’s (2007) conceptualization of proof to frame our perspective: “Proof is a
mathematical argument, a connected sequence of assertions for or against a mathematical claim.”
This sequence incorporates a “set of accepted statements” that does not require additional justifica-
tion and uses “modes of argumentation,” which are expressed with “modes of argument representation”
accessible to the classroom community, that is, the students and instructors who jointly discuss
the |_1r()of(pA 291, italics in original). We believed that Stylianides’s conceptualization of proof
aligned well with our goals, goals which underscored the importance of the classroom commu-
nity and public justification of knowledge. We were interested in designing, developing, and
adapting strategies that could be used repeatedly throughout the semester and that addressed our
goals. Specifically, we used one strategy—critiquing sample student work—in multiple situations
to highlight identified misconceptions and provide contexts in which PSTs could engage in rich

mathematical discourse.

m Critiquing Sample Student Work

Critiquing student work made PSTS the mathematical authority in the university classroomn,

and therefore, as instructors, our role in selecting or creating ;Lppropri:\tc,sﬂmpic work to cover a
range of responses was crucial. The work we had the PSTs examine included statements or uses

of definitions, geometric sketches, mathematical arguments, and formal proofs. We either created
sample responses or used PSTs’ responses from homework or quizzes to highlight misconceptions.
"This strategy of examining sample responses empowered PSTs to become their own best critics.
Because they expected to evaluate their peers’ work, they became more adept at creating and
improving their own definitions and proofs of theorems.

When we gave PSTs sample work to evaluate, we attempted to articulate the focus of their
critique. If the sample work was in response to & certain questior, we expected the PSTs to deter-
mine which answer was the most convincing and explain why, paying attention to three criteria:
(1) was the response correct (i.e., were there any mathematical inaccuracies?); (2) was the response
clear (i.e., did they understand the response?); and (3) was the response complete (i.c., did the work
answer the question that had been asked?). Sometimes two possible responses would be correct,
but one might be more convincing because it was more complete. Our goal was to have the PSTs
identify such differences, because such identification is essential as teachers plan instruction to
help all students develop a deep mathematical understanding. In some cases, PSTs modified the

sample response 50 it satisfied the three criteria.
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Because one goal was to improve PSTs’ ability to understand and write proofs, our critique
tasks addressed two areas where PSTs demonstrated misconceptions. The first are; focused zn th
concept of definitions and the second on the need to clearly identify the hypotheses and conclusi \
of mathematical statements. We viewed both as important precursor knowledge for moving Pl;?}(;n

toward a sophisticated understanding of proof as conceptualized by Stylianides (2007). We share

sample responses used for critique related to each of these areas
' :

Sample Tasks Involving Definitions

Early in the course, we found that PSTs struggled with understanding a certain definition, perhaps
because they did not see the need for the mathematical precision of the definition another’ cpriticaﬁ)
area f'or teachers as their students need to address precision as part of CCSSM’s rr,lathematical
practice 6 (NGA Center and CCSSO 2010). As one example, to have PSTs understand the differ-
ence between the measure of an arc in circular degrees and the measure of an arc in length, we had
them consider the sample responses and question in figure 15.1. s

®(® 5

Fig. 15.1. Four student responses to the task, “Draw and label an example of two
noncongruent arcs that contain the same number of circular degrees each.”

Of the four responses, only response 3 was incorrect (not meeting criteria 1), because the arcs
were congruent. Response 2 “looked right” but was not labeled, so it exempliﬁed,a response that
was not clear (not meeting criteria 2). This particular response is typical of reasoning iII)I eometr
where students think a picture that “looks right” is correct, providing evidence of the e?r;ce tualy’
proof scheme (Sowder and Harel 1998). Response 1 was labeled, and therefore was anpim rF())ve—
meflt over response 2, but did not meet criteria 3 for completeness because the angle is nort) an
.arbltrary angle. Response 4 was the strongest response (meeting all three criteria); in some sense
it contained the “proof” that the two arcs contained the same number of circular c,legrees, becaus;:
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the central angle subtended by the two arcs is the same angle. This response could have been EgEn
stronger had the student clearly indicated that the two arcs were not congruent, so completeness is

not an absolute standard but falls along a continuum. ‘ . N
Thus. this task forced the PSTs to examine not only mathematical inaccuracies (criteria 1) but
b

different levels of clarity in a visual representation (criteria 2) and the completeness of th‘e response
(criteria 3). The PSTs had an opportunity to discuss this task in groups. As an opportunity for
individual accountability, we gave the following task on an exam:

o A student in a high school geometry class argues as follows: “Since the‘ measure of the g
inscribed angle BAC is 1/3 of the arc BC, and since the measure of the inscribed angle D.
is 1/ of the arc DE, and since angle BAC is congruent to angle, DAE, arcs BC and DEdareil
congruent.” (See fig. 15.2.) Explain which parts of the student’s answer are correct and what

the student’s error in thinking is.
‘\ A

Fig. 15.2. Figure for congruent arc problem

In this hypothetical argument, the student concluded incorrectly tha'F the two Aies BCand
DE are congruent; the steps in the hypothetical argument are correct until the last line, when the
student confused the measure of the arc in circular degrees with the measure of the arc length. The
PSTs needed to recognize that the hypothetical student did not apply the correct context for the
definition of arc measure and confused arc length with number of circular degrees.
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Sample Tasks Involving the Identification of Hypotheses and
Conclusions

As we began instruction on proof, we realized that PSTs struggled with identifying the hypotheses
and conclusions of statements. Sometimes, as instructors, we spend considerable time trying to
comimunicate sophisticated ideas relative to proof development, such as ideas related to appropriate
modes of argumentation (e.g., direct or indirect reasoning) or modes of argument representation
(e.g., symbolic or narrative), when the basic concepts of the initial assumptions and the conclusion
are not clear to our students. As a preliminary task relative to this issue, PSTs examined sample
responses in which the theorem “Bisectors of supplementary angles are perpendicular” had been
written in if-then form. Indeed, the statement of the theorem appears to some PSTs to reflect
mathematical “truth,” rather than a statement that has a hypothesis and a conclusion. Identifying
the assumption that is implicit in the phrasing of the statement was a challenging task for many.

Again, PSTs evaluated sample responses based on the criteria of correctness, clarity, and com-
pleteness. Sample responses from a previous quiz included:

1. If supplementary angles have bisectors, then they are perpendicular.
2. Ifyou bisect supplementary angles, then the bisector is perpendicular.

3. Ifyou can construct bisectors of supplementary angles in a figure, then those bisectors
are perpendicular.

4. If two angles are supplementary, then their bisectors are perpendicular.

Notice that the first three responses did not pinpoint that the assumption of the statement
is that the angles are supplementary. In addition, language issues naturally arose. For example,
in response 1, it is unclear whether the pronoun “they” refers to the bisectors or the angles. In
response 2, the student is unable to make meaning of the words “bisect” and “bisector” and so
wrote a sentence with no meaning; in essence, the student considered a bisector to be perpendicu-
lar on its own without reference to another line.

At a more advanced level, PSTs were given the task in figure 15.3. Most of the proof is
correct, except for the first step. This error occurs because the student used the “fact” that two
angles are “alternate interior angles” to conclude that the angles are congruent. In other words,
the response used the assumption that two of the sides of the quadrilateral are parallel to conclude
that the quadrilateral is a parallelogram; the relatively subtle error implicitly used the conclusion
instead of the hypothesis.
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Fig. 15.3. Student response to the task, “Find, and if possible, fix the errors in the
proof of the following statement: If the diagonals of a quadrilateral bisect each
other, then the quadrilateral is a parallelogram.

= Implementing Critiques of Sample Work

We used varied implementation approaches to engage PSTs with critiquing sample étudent work(i
We previously described two approaches: (1) having PSTs discuss sample responses in groups an
then share with the class and (2) having PSTs evaluate and validate sample .responses on an exam.
Here we describe two additional implementation approaches (i.e., sharing via chart paper and

' i i jor i faced.
random reporting) and discuss a major issue we . .
Chart paper was a useful medium for sharing. For instance, PSTs worked in groups, with each

group creating a Frayer model for a definition (Frayer, Frederick, and Klausmeier 1969) or gen-
erating a sample argument or proof for a statement. We posted their work on chart paper around
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‘the room, without names. In groups, the PSTs circulated to read the samples from their peers and

attached a group grade to each sample on sticky notes. Then, during whole-class sharing, PSTs

justified why they gave a response a particular grade, providing PSTs an opportunity to engage

in an activity that will become a regular part of their careers, namely evaluating and validating

student work. Hearing rationales provided by others for why a response received a particular grade

helped everyone become more critical and discerning in reading responses. Thus, the PSTs again

tdok on the role of the mathematical authority in the university class rather than the instructors.
We often had the PSTs work collaboratively to critique sample responses and wanted to

ensure that all group members participated. We had a serendipitous finding from sharing via

random reporting (Kagan 1992). We numbered the groups and then the individuals within the

group. When we were ready to share, we rolled a die to identify the group and rolled the die again

to identify the individual in the group who would respond. This small change in our sharing had

a major impact on group dynamics from the standpoint of the PSTs. Because they did not know

who would be the spokesperson for the group, they all felt the need to ensure that every group

member was able to speak for the group. Once this change in individual accountability was imple-

mented, random reporting became the standard means of sharing from groups to the entire class.
A major issue we faced was building a body of knowledge, especially in a proof-based course

such as geometry, when many of the PSTs had taken geometry in high school and had previous

knowledge (with or without proof) of the material. To address the uncertainty of what information '

was acceptable to use, we introduced the idea of the “toolbox” and what was in it. As the course E

progressed, definitions and theorems that had been proved in class were added to the toolbox and

could be used to construct future proofs (compare “set of accepted statements” [Stylianides 2007,

p- 291]). The use of the toolbox was a metaphor that clarified and made explicit for some PSTs

what assumptions they were allowed to make when attempting to prove a given statement. The

toolbox metaphor is one that secondary teachers can use with their own students who will have

seen many of the concepts in geometry and algebra in earlier grades but often without justification.

Implications for Practice: Critiquing Sample Work to
Focus on Metaknowledge about Proof

We have discussed how we used critiquing hypothetical and actual student work (within different
implementation structures) as a primary means of having PS'Ts reflect on two areas of difficulty,
namely, the concept of definition and the need to clearly identify the hypotheses and conclusion
of a given mathematical statement. At the end of the geometry course, we surveyed the thirty-one
PSTs about their perceptions of proof. This was to help us understand how our strategies related
to proof instruction affected PSTs’ perceptions of their own proof ability and how we might refine
our approach to teaching reasoning and proof in the future. Here we share what we learned from
those surveys and from a further reading of research literature. We share implications for practice
related to using the strategy of critiquing sample work to focus more explicitly on metaknowledge
about proof.

One survey question was, “What does it mean to prove something?” Many of the PSTs
responded to this question with statements such as, “To prove something means to provide factual
information for a generalized concept” or “To show that something always works.” These responses
suggested that PSTs may have been thinking about proofs as demonstrating validity in a vacuum
without consideration of the idea that mathematicians prove an implication within a larger theory
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dependent on axioms and prior knowledge that has been deduced in that system. Less frequent
were responses from PSTs that indicated attention to the idea that a mathematical proof proves
an implication (If A, then B) rather than proving a fact (Cabassut et al. 2012). An exemplary, but
uncommon, model of such a response was, “You show that if A then B or if A is true then B. You
start with A then use your toolbox to prove B.”

The responses from our PSTs caused us to reflect on how we might modify our approach to
more explicitly point to the idea that proof is not a “stand-alone concept” (Balacheff 2009, p. 118)
but depends on and exists within a larger theory (Cabassut et al. 2012), a central tenet of mathe-
matical sense making. Mathematics teachers at the K-12 and university levels often assume that,
through engaging in proof construction and related activities, individuals will obtain a metalevel
understanding of the role and meaning of proof within the discipline. However, students at all
levels persist in their difficulties with proof concepts that may be ameliorated through explicit
attention to the notion of proof, what Cabassut and colleagues (2012) refer to as “metaknowledge
about proof” (p. 181). More important, it is precisely this metaknowledge about proof that is
essential for teachers if they are to provide authentic experiences for their own students in proof
and argumentation and an accurate portrayal of mathematics as a discipline.

Cabassut and colleagues (2012) suggested the use of “mini-theories” to help individuals
think about this metaknowledge. The toolbox metaphor might be a useful step in developing
mini-theories, in that PSTs came to understand that the validity of their arguments depended
on the set of tools (axioms, previously proven theorems, etc.) that were accepted in their commu-
nity (see Stylianides 2007). Similar to the mini-theories proposed by Cabassut and colleagues,
we hoped the toolbox would allow PSTs to gain a sense of the structure and systemization of
mathematics. When reflecting on activities they believed helped them become proficient with
proof, several mentioned the toolbox as facilitating their understanding of proof concepts. For
example, one PST wrote, “At the beginning of most lectures, the class breaks up into groups and
investigates certain characteristics/properties of geometric shapes that will lead up to the proofs.
After each point we are able to put the ‘knowledge’ into our ‘toolbox’ to use for later proofs of
theorems.” We believe PSTs recognized the toolbox as a norm in the class, but may not have made
connections to the metalevel understanding that all mathematical proofs‘exist and are valid only
within a theoretical construct, such as the axioms and theorems of Euclidean geometry.

According to Cabassut and colleagues (2012), few ideas have been shared about how to incor-
porate metaknowledge about proof into classroom instruction. Thus, an implication for practice
from our work is that critiquing of sample work with PSTs has the potential for leading to explicit
discussions on Cabassut’s components of metaknowledge about proof. For example, one compo-
nent is related to an understanding of “the absolute certainty of mathematics,” which “resides not
in the facts but in the logical inferences, which are often implicit” (p. 183). Critiquing related to
identifying hypotheses and conclusions can serve as a jumping-oft point for explicit discussion
related to the role of implication in proof. Another component of metaknowledge about proof
is “the conscious use of definitions” that must “be understood and applied in their exact mean-
ings” (p. 185). Critiquing of tasks, such as recognizing that different conclusions follow from two

distinct definitions for measure of an arc, could highlight the importance of precision in the use of
definitions while engaging PSTs in mathematical reasoning.

In constructing sample responses, we addressed misconceptions that arose in class related
to the role and nature of proof; these provided opportunities for PSTs to reflect on these issues.
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However, their reflections cannot be left implicit; in future instruction, we plan to incorporate

a gr.eater focus on metaknowledge about proof through explicit discussions resulting from their
critiques of sample work.

® Conclusion

We have described a global strategy, namely critiquing
mentations, for courses at any grade level in which ingu
even if enhancing proof-writing proficiency is not
CCssm i ice 3, which i

M's Standard for Mathematical Practice 3, which includes “critique the reasoning of others”

(NGA Center and CCSSO 2010, p. 6); for PSTs

5y Lls.i.nér this strategy l)l‘l)vitf()‘: a model for futur
: ' . ) : S ¢ uture
instruction. An added benefit of using the strategy was removing the teacher as the authority'
)

the PSTs themselves, often working in groups, became the authorities. Not only did the PSTs
'become engaged and responsible for their own learning, their critical thinking and mathemat-
ical proof-writing skills also improved. The strategy engaged PSTs as learners of mathemati

and provided practice in evaluating and validating student work, something they will need 1tf)sd
regul:?rly as teachers. Their survey comments suggested that the toolbox idea, the collaborative ’
wor.k in critiquing arguments, and the proof construction and critique as a whole class enhanced
their own proof proficiency. We believe the strategy we described and the various ; i
approaches (sharing in groups and then as a class, via chart P
ating and validating sample work on exams) are applicable in
help build deep conceptual understanding of mathematic
strategies in their own learning, we believe the
future instruction and be able to help their stu
role in the discipline of mathematics.

sample student work, with various imple-
tiry and discourse are goals of instruction,
a goal. For K~12 students, this strategy supports

implementation
aper and random reporting; evalu-
many contexts beyond geometry to
al ideas. If PSTs experience I.)l)WCl'f"l:If

y will want to incorporate such strategies into their
dents develop metaknowledge about proof and its
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