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Abstract— The aim of this study is to investigate a data mining 
approach to help assess consequences of oil spills in the 
maritime environment. The approach under investigation is 
based on detecting suspected oil droplets in the water column 
adjacent to the Deepwater Horizon oil spill. Our method 
automatically detects particles in the water, classifies them and 
provides an interface for visual display. The particles can be 
plankton, marine snow, oil droplets and more.  The focus of 
this approach is to generalize the methodology utilized for 
plankton classification using SIPPER (Shadow Imaging 
Particle Profiler and Evaluation Recorder). In this paper, we 
report on the application of image processing and machine 
learning techniques to discern suspected oil droplets from 
plankton and other particles present in the water. We train the 
classifier on the data obtained during one of the first research 
cruises to the site of the Deepwater Horizon oil spill.   
Suspected oil droplets were visually identified in SIPPER 
images by an expert. The classification accuracy of the 
suspected oil droplets is reported and analyzed.  Our approach 
reliably finds oil when it is present.  It also classifies some 
particles (air bubbles and some marine snow), up to 3.3%, as 
oil in clear water.  You can reliably find oil by visually looking 
at the examples put in the oil class ordered by probability, in 
which case oil is found in the first 10% of images examined. 

Keywords - oil-droplet detection; images; classification; oil-
spill; machine learning; support vector machine; plankton. 

I.  INTRODUCTION  
The Deepwater Horizon Oil Spill is the biggest 

environmental disaster in the United States history and is the 
largest marine oil spill in the history of the oil industry [1]. 
The impact of the spill is still being evaluated with various 
estimates of the immediate damage, area affected, and 
longevity of its effect being generated [2]. Most of the 
studies are focused on oil that occurred on the ocean surface, 
addressing the fact that oil-mixtures often are lighter than 
water and, thus, tend to float on its surface. However, there 
are many indications that chemicals aimed to disperse the oil 
compounds turned the oil into neutrally buoyant oil droplets 
(see Figure 1a), which permeated the depths of the Gulf of 
Mexico [3]. The properties of such oil droplets have the 
potential to allow them particles to remain in the water for 

long periods of time, negatively affecting the marine habitat, 
fishing, and tourism industry.  

In this study, we evaluate a special platform, SIPPER 
(Shadow Imaging Particle Profiler and Evaluation Recorder), 
for use in oil droplet detection in seawater. The SIPPER, 
which has been in use by marine scientists for the last 
decade, allows the timely extraction and identification of 
millions of plankton images per deployment as scanned by 
its underwater sensor. Based on a proven record for plankton 
population classification, we undertook a study to assess how 
suitable this platform is for detection of oil droplets 
suspected to be in the water.  

Researchers from the University of South Florida’s 
(USF) College of Marine Science collected image data 
during one of the first research cruises to the area affected by 
the Deepwater Horizon oil spill. The data include images of 
particles and plankton (see Figure 1b), along with suspected 
oil droplets. It is stressed here, that the oil droplets are only 
“suspected” as we have only images, but not corresponding 
physical water samples. However, based on the extensive 
experience of the marine scientists involved in the manual 
examinations of the data, it is believed that it is highly likely 
that the images represent oil droplets. 

 The aim of this research is to evaluate the effectiveness 
of image processing and machine learning techniques to 
process a large quantity of data and to classify particles 
obtained from the underwater research instrument, assuming 
the image data collected during the initial deployment indeed 
includes oil droplets. We are not aiming to draw any 
conclusions on the ecological meaning of the SIPPER data 
and presence of actual oil. However, this research may result 
in a vision-based method to assess the presence of such oil 
droplets in the water columns using the SIPPER imaging 
system. This paper briefly describes the hardware of the 
instrument, the algorithmic process used to discern the 
suspected oil droplets from other plankton particles, and the 
results obtained on a dataset collected in the immediate 
vicinity of the oil spill, as well as the results obtained from 
data collected from unaffected areas. We discuss our 
observations, limitations of the approach, and provide 
suggestions for further research. 
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II. DESCRIPTION OF PLATFORM AND 

The SIPPER [4] was developed by the 
Technology at the University of South 
purpose of monitoring the composition, dist
structure of plankton and other suspended pa
environments. The SIPPER uses co
illumination and a high speed line s
continuously image particles and plankto
through a 10cm × 10cm sampling ape
continuously scanning line scan camera cap
are 10 cm in width and continuous in lengt
particles that enter the sampling tube are im
as a single large SIPPER file with concu
environmental data, such as temperat
embedded within the SIPPER file. A 
deployment can result in hundreds of thous
of individual extracted particle images larg
equivalent spherical diameter (ESD).  

Custom designed software, the Pla
Classification Extraction System (PICES), w
quickly extract, classify, manage and analy
plankton images. A database management s
PICES allows management of the large 
generated by SIPPER. PICES provides qu
organization of data by multiple parameters
deployment, depth, salinity, temperature, 
etc.  

Use of PICES results in efficient and t
of collected data. The algorithms used duri
the data include those for image ext
calculation, and image classification.  

PICES uses a simple algorithm to ex
separate particles based on foregro
segmentation and a connected components 
segmenting the image of a particle, a numb
calculated/extracted and a feature vector 
features are used by a classification algor
assign a class label to the image.  

PICES uses a trained SVM [7] to class
supervised manner. The SVM classifier 
several reasons. First, experiments with dif
on data from the SIPPER device showed th
more accurate than other classifiers [8]. S
classifier provides a confidence or probabi
its selection, giving more flexibility in th
process. Third, the SVM classifier is charact
number of ‘support vectors’, the instances o
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specifically designed to aid in detection of oil droplets. They 
were mostly concerned with the circularity of the shape of oil 
droplets and their texture properties.  

IV. SVM PARAMETER TUNING AND FEATURE SELECTION 
In this work we used a one-versus-one strategy in order 

to implement a multi-class classifier. The primary reason for 
such a decision was the faster speed of training, which is 
shown by some studies [13]. In this strategy, all SVM 
classifiers for each possible binary class combinations were 
created. A class label is selected by a majority vote. In the 
case of a tie among classes, the probability parameter of 
SVM was used to select the class label.  

The feature selection process consisted of two steps: 
initial SVM parameter tuning and binary feature selection. 
The parameters (gamma, C, A) of the SVM were optimized 
by performing a grid-search with a certain interval across the 
training dataset [14]. Using the SVM parameters determined 
in the first stage of the selection process, binary class feature 
selection was performed using wrappers [15, 16]. Each 
combination of features and SVM parameters was evaluated 
using 5-fold cross validation [17] and the classification 
accuracy on the training set was used to guide the selection 
process further. In cases, where the classification accuracy is 
equal for several evaluated sets, the correctness of 
probability (CPP) [9] was used to rank the sets. 

V. DESCRIPTION OF DATA 
The data consists of images collected by the SIPPER 

during one of the first research cruises to the area of the 
Deepwater Horizon (DWH) oil spill on May 5-16, 2010 on 
the USF research vessel Weatherbird II. Data from three 
deployments was collected within 5 km of the original site of 
the DWH platform on May 14 and 15. However, the ship 
was not allowed to closely approach the spill source per the 
Coast Guard’s interpretation of safety in the region. 
Anomalous semi-opaque spherical particles were manually 

detected in the SIPPER images in the upper 10 m during 
these three deployments.  These particles were imaged in 
areas where oil was visibly observed at the sea surface, 
during a time of relatively strong winds and building seas.  
These conditions provide a possible mechanism by which 
surface oil could be mixed down into the water column. 
Based on these results and because these particles were not 
observed in imagery collected in nearby waters where 
surface oil was not present, we labeled these particles as 
suspected oil droplets. They did not resemble other spherical 
particles that had previously been imaged by SIPPER, such 
as fish eggs, sarcodine protists, or air bubbles. Other cruises 
around this time resulted in the collection of SIPPER 
plankton data from areas of the Gulf unaffected by the oil 
spill. The data from unaffected areas was used to assess the 
sensitivity of the approach to the presence of oil droplets and 
compare the distributions of particles between the areas. 
Results of such comparisons may be used for future studies 
of the ecological impact of the spill. 

Evaluation of the observed image data suggests that the 
water column contained mostly small particles.  Many 
smaller particles are found for each large particle 
encountered. Figure 2 shows the size distribution of particles 
found in the SIPPER images from the research cruise to the 
by the oil spill area. Size is the area in pixels of each particle. 
For this study, the dimensions of each pixel are 
approximately 27 �m on each side.  

Particles that exceeded 100 pixels in total area were 
extracted. As seen in Figure 2, there were abundant small 
particles present, while larger particles were far less 
numerous. However, due to the lack of resolvable features 
for the smallest extracted particle images, only particles 
greater than 250 pixels in total area were classified by an 
expert.  It was decided to disregard all images smaller than 
250 pixels to increase the accuracy of particle classification. 
Images of sizes > 250 pixels, according to our observations, 
contained enough texture and contour information to 
effectively differentiate among classes.  

TABLE I.  IMAGE FEATURES USED TO CLASSIFY PARTICLES PRESENT IN THE WATER 

Category Sub-Category Feature Count 
Moment Features [11] Binary 8 

Intensity weighted 8 
Edge pixels only 8 

Morphological  9 
Head/Tail Pixel counts of first quarter and last quarter 2 

Length vs. width 1 
Length 1 
Width 1 

Filled Area  1 
Convex Area  1 
Transparency Binary/Weighted 2 
Texture Using Fourier Transform [12] According to each frequency range 5 
Contour Fourier Average of Five Frequency Domains  5 

Hybrid combinations 15 
Intensity Histogram Without white space 7 

With white space 8 
Circularity Circularity, Equivalent Diameter, Eccentricity, ratios, etc 5 
Texture Intensity statistics, Smoothness, Uniformity, Entropy 6 
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For all datasets, the number of classes was set to 36, 
which represented only major classes of particles with at 
least 20 instances. Table II shows the categories of classes 
used in our study. We created five datasets (see Table III) to 
study the data from the area affected by the oil spill, as well 
as unaffected areas.  

The set of images, called Oil Original Set, was obtained 
by selecting instances of particles from the data obtained in 
the area affected by the spill, that were of primary interest to 
marine scientists. There were a number of selection criteria. 
First, the particles had to be identifiable in the sense that they 
had a high probability of being a particular plankton class or 
oil droplet. Second, since we were primarily interested in oil 
detection, oil droplets were a focus of the initial search and 
more likely to be labeled.  This labeling was done first after 
the cruise. Thus, this dataset does not represent a completely 
random choice of particles. Overall, the set is composed of 
8,537 particles, which represented less than 0.5% of all data 
during the cruise to the affected area. The oil droplet class 
was 1,072 instances, comprising 12.49% of the particles in 
the dataset. The decision to label each particle was made 
based on a visual analysis of the particle, with the knowledge 
available to the expert. 

The Non Oil Set contains data that was collected during 
other cruises to areas unaffected by the BP oil spill. This data 
was collected from several locations in the Gulf of Mexico as 
well as the Caribbean Sea in 2010. The experiments 
conducted on this data were designed to test the classifier’s 
specificity to oil droplets, i.e., detection of oil when no oil is 
present. The dataset had 6,745 particles belonging to 36 
classes with zero oil droplets. 

The Oil Random Set was created in a different manner. 
Instances of all particles in the set were randomly selected 
from the data from the cruise to the areas affected by the 
spill, not just by selecting particles of interest. The particles 
in the set were assigned the appropriate class based on visual 
analysis. Thus, this dataset has approximately the same 
distribution as the real distribution of particles in the water 
during that deployment.  

The next two datasets actually represent two categories 
of datasets, such that each dataset in a single category differs 
from other datasets in the same category only by the 
composition of its instances of oil droplet class. The datasets 
were obtained from the data from the same cruise in the 
following manner. First, the Oil Original Set was used to 
train an SVM classifier within PICES. The resulting 
classifier was used to classify all the data from the cruise. 
About 50,000 images that had a high confidence for the 
predicted class were viewed by an expert and given final 
class labels (which could be the same as the predicted class 
label). Some of the instances in this classified and validated 
data were part of the Oil Original Set, because it came from 
the same pool of raw data. Since our interest was mainly in 
oil detection, priority was given to the validation of oil 
droplet predictions. Out of 50,000 instances of classified and 
validated data about 20,000 instances were oil droplets.  

The Oil Original Replaced Set is a category of datasets, 
which was obtained from the Oil Original Set by replacing 
the 1,072 oil droplets with oil droplets randomly selected 
from the set of classified and validated data as described 
above. The category has 30 datasets. Each of the 30 datasets 
in the category has the same number of instances as the Oil 
Original Set, but a different random set of instances from the 
oil droplet class. The experimental results are reported for 
the whole category Oil Original Set Replaced by averaging 
the results from each dataset within the category. For 
example, when it is stated that the classifier was trained on 
the Oil Original Set Replaced and tested on the Non Oil Set it 
means that 30 classifiers have been created. Each classifier 
was created by training on a unique dataset from the Oil 
Original Set Replaced category. Then, each classifier was 
used to classify the Non Oil Set. The results from 30 
classifications are averaged and reported as a single 
experiment. By averaging the results from a statistically 
significant number of datasets, it is possible to minimize the 
risk of a good/bad random selection of oil droplet instances 
which can skew performance.  

Figure 2.  Size distribution of particles in the flow of water according 
to their size in pixels during the research cruise to the area of DWH oil 

spill.  

TABLE II.  CATEGORIES OF CLASSES OF PARTICLES USED IN EXPERIMENTS 

Category of classes of 
particles 

# of classes in category 

Crustacean Copepod 5 
Crustacean Eumalacostracan 3 
Detritus (including oil droplet) 5 
Echinoderm 1 
Elongate 2 
Fish 1 
Gelatinous 8 
Mollusc 2 
Noise 2 
Phytoplankton 1 
Protist 5 
Radiolarian 1 
TOTAL 36 

 

TABLE III.  DATASETS USED IN EXPERIMENTS 

Dataset Identifier Particles total Oil droplets
Oil Original Set 8536 1072
Oil Original Replaced Set 8536 1072
Oil Large Test Set 43816 13858
Non-Oil Set 6745 0
Oil Random Set 13678 79

0.00

2,000,000.00

4,000,000.00

10
0

35
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

50
00

744



Similarly, the Oil Large Test Set is a category of 30 
datasets. Each dataset in the category was obtained by 
including all predicted and validated data that passed through 
the following filters. Instances of the data that are a part of 
the Oil Original Set were removed. 5,000 images of oil 
droplets, selected randomly, were removed for future use for 
validation. Another 1,072 oil droplets used for building a 
particular dataset, within the category of the Oil Original 
Replaced Set, were removed as well. They are the 1,072 used 
to build the classifier being tested on this data set. Each 
dataset within the Oil Large Test Set category had 36 classes, 
43,816 images total, of which 13,858 were oil droplets. The 
results of experiments where the category Oil Large Test Set 
was used are reported by averaging the performance from 30 
individual classifiers within the category. For a particular 
experiment the classifier is trained on the Oil Original Set 
Replaced and tested on the Oil Large Test Set, such that 
instances of the oil droplet class in training and test datasets 
don’t intersect.  

The datasets Oil Set Original, Oil Large Test Set, and Oil 
Random Set did not intersect. Datasets Oil Set Original and 
Oil Set Original Replaced intersected for instances of all 
classes except oil droplets. 

VI. EXPERIMENTS 
In our experiments, we report the accuracy of 

classification in the form of a 2x2 confusion matrix, as if we 
were doing binary classification, although the setup of the 
experiment itself was not binary. One class was the oil 

droplet class, particles of particular interest for this research. 
The category ‘other’ represents the classification of all other 
particles compared against oil droplets. Thus, every 
prediction in favor of one of the other 35 classes of the 
datasets is summarized into the ‘other’ category.  We do not 
report the accuracy among the 35 non-oil classes. 

Binary Feature Selection was done to select features for 
each of the 630 binary SVM classifiers that comprised our 
one-stage classifier for 36 classes. Table IV shows the 
performance of the classifier using 10-fold cross validation 
on the Oil Original Set. The oil identification accuracy was 
90%, with a less than 2% false positive rate.   Table V shows 
the results of a 10-fold cross-validation on the Oil Original 
Replaced Set. The accuracy and false positive rate in that 
experiment were improved, correctly identifying 94.37% of 
oil droplets, with a 1.25% false positive rate. Such 
performance can be explained by the fact that the oil droplets 
in the Oil Original Replaced Set are likely more varied in 
their appearance.   The original set of oil droplets included 
those that were most clear to the expert.  Hence, we can 
expect that they appear quite homogeneous with minimal 
variation, so they could be sure of the label. 

In all other experiments we report the performance of 
two classifiers, first trained on the Oil Original Set (called 
Classifier I) and second trained on the Oil Original Replaced 
Set (called Classifier II) to compare their sensitivity and 
specificity. As stated in the previous section, experiments 
with the Oil Original Replaced Set (Classifier II) involved 
30 datasets that belonged to that category and the results 

TABLE IV.  PERFORMANCE OF SINGLE-STAGE CLASSIFIER. 10-FOLD CROSS 
VALIDATION ON OIL ORIGINAL SET 

Oil droplet detection accuracy: 90.95% 

   
Absolute Performance:  
 Oil droplet Other Count:

Oil droplet:  975 97 1072
Other 104 7360 7464
Total: 1079 7457 8536

   
Relative Performance:  
 Oil droplet Other 
Oil droplet:  90.95% 9.05% 
Other 1.39% 98.61% 

 

TABLE V.  PERFORMANCE OF SINGLE-STAGE CLASSIFIER. 10-FOLD CROSS 
VALIDATION ON 30 SETS OF OIL ORIGINAL REPLACED SET CATEGORY. 

Oil droplet detection accuracy:  94.37% 

  
Absolute performance:  

Oil droplet Other Count:

Oil droplet 1011 61 1072
Other 94 7370 7464
Total: 1104 7431 8536

 
Relative Performance  

Oil droplet Other
Oil droplet 94.37% 5.63%
Other 1.25% 98.75%

 

TABLE VI.  PERFORMANCE OF CLASSIFIER. TESTED ON OIL LARGE TEST SET, 
TRAINED ON OIL ORIGINAL SET. 

Oil droplet detection accuracy: 92.67%   

        
Absolute performance:  
  Oil droplet Other Count

Oil droplet 12842 1016 13858
other 1324 28634 29958
Total 14166 29650 43816

        
Relative Performance:   
  Oil droplet Other 
Oil droplet 92.67% 7.33%  
Other 4.42% 95.58%   

TABLE VII.  AVERAGE PERFORMANCE OF CLASSIFIER. TESTED ON OIL LARGE 
TEST SET, TRAINED ON OIL ORIGINAL REPLACED SET. 

Oil droplet detection accuracy: 94.28% 

 
Absolute performance:

Oil droplet Other Count

Oil droplet 13066 792 13858
other 1013 28945 29958
Total 14079 29737 43816

 
Relative Performance: 

Oil droplet Other
Oil droplet 94.28% 5.72%
Other 3.38% 96.62%
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from those 30 runs were averaged. Thus, Classifier II 
actually represents 30 classifiers, but in the paper, for 
simplicity, we refer to it as to a single classifier. 

The two classifiers were created and then applied to 
make classifications on the Oil Large Test Set, Non Oil Set, 
and Oil Random Set. The results for these experiments are 
shown in Tables VI-XI. 

For the largest of our test sets, Oil Large Test Set, 
Classifier I achieved a detection rate of 92.67%, and 
Classifier II achieved 94.28%. The false positive rates were 
4.42% and 3.38%, respectively (see Tables VI and VII). 
Thus, Classifier II had better accuracy of detection and false 
positive rate. Similar performance in relation to the false 
positive rate was observed in experiments with the Non Oil 
Set (see Tables VIII and IX). Classifier II had a false positive 
rate of 3.29% as opposed to 7.62% using Classifier I. A 
greater performance difference between Classifier I and 
Classifier II was observed while testing on the Oil Random 
Set. The detection rate for oil droplets with Classifier I was 
75.95% and the false positive rate was 5.08% (see Table X). 
The detection rate with Classifier II was 12% lower in this 
case, 63.92%, with about one third as many false positives,  
1.71% (see Table XI).  Overall, the detection rate was lower 
for the Oil Random Set, than with all previous test datasets.  

Because of the way the Oil Random Set was built, it had 
a distribution of particles similar to that expected in the 
vicinity of the oil spill. In examining the current SIPPER 
data, one finds the percentage of oil droplets in the dataset 
was about 0.5%. The false positive rate for both classifiers 

was always higher (1.25-7%). Thus, for regular SIPPER 
data, it is not yet possible to automatically verify the 
presence of oil droplets in water with the currently built 
classifiers.  

Consequently, we took the class predictions from 
Classifier II on the Oil Random Set and extracted 
probabilities for them from a modified version of libsvm 
[10].  We then ranked the examples classified as oil by 
probability from highest to lowest (Figure 3). These results 
indicate that the number of oil droplets is always between 11 
and 25% of the predicted oil.  The good news is that if an 
expert looks at the images classified as oil, they will find 
some oil in the top 10% and top 20% of the classifications 
(see Figure 4).  If they were to randomly search through 
images with 0.5% oil, when oil droplets are present, they 
would need to look at 200 examples to find one oil sample.  
They will find four in the first 25 examined with our tool.  
Thus, the user can quit looking if no oil is found in the first 
50 or so images that are highly ranked by probability of 
being oil. 

Now, it is clear from looking at Figures 3 and 4 that 
many of the top probability “oil droplets” are, in fact, not oil.  
Air bubbles and marine snow can look very similar.   In 
Figure 4, the non-oil images are a little more elliptical in 
shape than oil droplets.  However, oil does not have to be 
perfectly spherical as we can see from Figure 1. Reviewing 
the features selected for each individual binary SVM 
classifier that comprised this single-stage classifier, it was 
confirmed that the most important features used to 

TABLE VIII.  PERFORMANCE OF CLASSIFIER. TESTING ON NON OIL SET WHEN 
TRAINED ON OIL ORIGINAL SET. 

False positive rate: 7.62%   
        
Absolute performance: 
  Oil droplet Other Count:
Oil droplet 0 0 0
Other 514 6231 6745
Total: 514 6231 6745
      
Relative Performance : 
  Oil droplet Other 
Oil droplet 0.00% 0.00% 
Other 7.62% 92.38% 

 

TABLE IX.  AVERAGE PERFORMANCE OF CLASSIFIER. TESTING ON NON OIL 
SET WHEN TRAINED ON OIL ORIGINAL REPLACED SET. 

False positive rate: 3.29%  
    
Absolute performance:

Oil droplet Other Count:

Oil droplet 0 0 0
Other 222 6524 6745
Total: 222 6524 6745

 
Relative Performance :

Oil droplet Other
Oil droplet 0.00% 0.00%
Other 3.29% 96.71%

 

TABLE X.  PERFORMANCE OF CLASSIFIER. TESTED ON OIL RANDOM SET, 
TRAINED ON OIL ORIGINAL SET. 

Oil droplet detection accuracy: 75.95% 

      
Absolute performance: 
  Oil droplet Other Count
Oil droplet 60 19 79
Other 691 12908 13599
Total 751 12927 13678
      
Relative Performance : 
  Oil droplet Other 
Oil droplet 75.95% 24.05% 
Other 5.08% 94.92% 

 

TABLE XI.  AVERAGE PERFORMANCE OF CLASSIFIER. TESTED ON OIL RANDOM 
SET, TRAINED ON OIL ORIGINAL REPLACED SET. 

Oil droplet detection accuracy: 63.92% 

 
Absolute performance:

Oil droplet Other Count

Oil droplet 51 28 79
Other 232 13367 13599
Total 283 13395 13678

 
Relative Performance :

Oil droplet Other
Oil droplet 63.92% 36.08%
Other 1.71% 98.29%
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discriminate the oil droplet class from others were related to 
the circularity of the shape, and the texture of the particle.  
However, it turned out it is not quite enough for completely 
automatic oil detection. The current performance can be 
further explained by the following. Reviewing the support 
vectors for the binary classifier, which generates the most 
false positives – Oil Droplet vs. Noise Bubbles we found 
incorrectly labeled training data, which was used to 
characterize the classifier. In the list of 18 support vectors 
that constituted the border of the classifier that separated the 
oil droplets, four of the support vectors were in fact noise 
bubbles instead of oil droplets. This fact was confirmed by 
an expert when instances of training data of the oil droplet 
class, constituting the support vectors for the mentioned 
classifier, were re-examined. Further improvements are 
likely possible from having an expert examine the support 
vectors of the most confused classes. 

VII. DISCUSSION 
The analysis of the particles, which were most confused 

with oil droplets, suggests that there are only three major 
classes that have an appearance similar to oil droplets: 
detritus snow, noise bubbles, and protists with a lopsided 
shape. It is possible that a two-stage classifier will allow 

fully automatic detection of oil droplets in water near the 
spill. The first stage of the classifier would be aimed at 
sensitivity to oil droplets, while producing many false 
positives. The second stage of the classifier would focus on 
specificity to oil droplets. This setup is reported to be useful 
to detect very rare events and for cases in which many 
features are costly to compute [18]. Certain improvements 
can be also made in relation to features used to discriminate 
between the most confused classes. Circularity features were 
found very useful to discriminate oil droplets, which are 
often circular in shape, from many plankton organisms. 
However, those features are not particularly useful with other 
classes showing circularity – noise bubbles and marine snow. 
Further, we have found that our experts use depth to help 
them classify oil.  We did not use this feature, as many of the 
non-image features were not available due to precautions 
made to protect the environmental sensors  from oil damage.  

VIII. CONCLUSIONS 
Overall, a trained SVM achieved a high detection rate for 

oil droplets. When tested on the Oil Large Test Set, 
consisting of 43,816 particles, of which 13,858 were oil 
droplets, the accuracy of detection was over 94%, which is 
comparable to the cross validation test on the training set. 

 
Figure 3. Percentage of oil droplets in the predictions when sorted by probability of being oil.  So, 10% means the 25 highest probability predictions 
for oil of which 4 are actually oil.  This is with Classifier II applied to the oil random dataset with results shown in Table 11. 
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Figure 4.  Top 30 particles classified as oil droplets when sorted by the probability. Particles numbered 3, 8, 23, 27, 28 are suspected oil droplets. 

Particle number 18 is detritus snow. The others are noise bubbles 
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The false positive rate was less than 3.4% in all experiments 
with Classifier II, which was trained on a random selection 
of oil examples.  We did an experiment with a randomly 
chosen test set, whose distribution mimicked what would be 
expected during the cruise (about 0.5% oil). For that dataset, 
oil droplet detection was just 63%. It is also the case that in 
water where there was no oil, our classifiers predicted that a 
small amount of oil was present. 

We showed that by using probabilities for the class 
predictions and ordering them from highest to lowest, oil will 
regularly appear in the top 10-30% of data.  So, if an expert 
uses our tool, PICES, to view the images that are predicted to 
be oil, they will be able to reliably find oil droplets more 
quickly  than randomly searching through particles. 

There is room for improved oil detection to enable the 
best analysis of how much oil is in the water.  This will occur 
through classifier tuning/replacement and new features. It is 
also important to review the particular instances of training 
data that are selected as support vectors for binary classifiers. 
The current results are promising in terms of observing 
subsurface oil  and obtaining a general count of the number 
of oil droplets. 
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